Debian Squeeze man.m.sourcentral.org

Padre::Task(3pm) Use€Contributed Perl Documentation Pare::Task(3pm)
NAME

Padre::Task — Padre Background Task API
SYNOPSIS

Create a subclass of Padre::Task which implements your background task:
package Padre::Task::Foo;

use base 'Padre::Task’;

This is run in the main thread before being handed
off to a worker (background) thread. The Wx GUI can be
polled for information here.
If y oudon't need it, just inherit the default no—-op.
sub prepare {
my $self = shift;
if (condition_for_not_running_the_task) {
return "BREAK",

}

return 1;

}

This is run in a worker thread and may take a long-ish
t ime to finish. It must not touch the GUI, except through
Wx events. TO DO: explain how this works
sub run {
my $self = shift;
Do something that takes a long time!
optionally print to the output window
$self->print("Background thread says hil\n");
return 1,

}

This is run in the main thread after the task is done.
It ¢ an update the GUI and do cleanup.
You don't have to implement this if you don't need it.
sub finish {

my $self = shift;

my $main = shift;

cleanup!

return 1,

}

1
From your code, you can then use thig/tackground task class as followse(andschedule are
inherited.)

require Padre::Task::Foo;
my $task = Padre::Task::Foo—>new(some => 'data’);
$task—>schedule; # hand off to the task manager

As a special case, afarbitrarily nested and compdedata structure you put into your object under the
magic main_thread_only hash slot will not be passed to therker thread bt become \ailable
again whenfinish is called in the main thread. You can use this to pass referenggs abjects and
similar things to the finishvent handler since these must not be accessed from worker threads.

However, you should be cautious when keeping referenceaUioelements in your tasks, in case the
GUI wants to destrp them before your task returns.

Instead, it is better if youinish method knows he to relocate thesUl element from scratch (and
can safely handle the situation when @l element is gone, or has changed enough teertektask

EEEA perivs.10.1 2010-06-02 1

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

Debian Squeeze man.m.sourcentral.org

Padre::Task(3pm) Use€Contributed Perl Documentation Pare::Task(3pm)

response irrelent).

DESCRIPTION
This is the base class of all background operationsdtie? TheSYNOPSISexplains the basic usage,
but in a nutshell, you create a subclass, implement your own custwm method, create a ne
instance, and cafichedule on it to run it in a wrker thread. When the scheduler has a freeker
thread for your task, the following steps happen:

The scheduler callsrepare on your object.

If your prepare method returns the string 'break’, all further processing is stopped immediately.
The scheduler serializes your object witiorable

Your object is handed to the worker thread.

The thread deserializes the task object and nall§ on it.

After run() is done, the thread serializes the object again and hands it back to the main thread.
In the main thread, the scheduler céillish on your object with the &lre main winde object as
argument for cleanup.

During all this time, the state of your task object is retain®d!anything you store in the task object

while in the vorker thread is still there whefimish runs in the main thread. (Confer tBaVEATS
section below!)

METHODS
new
Padre::Task provides a basic constructor for you to inherit. It simply stores alliged data in the
internal hash reference.

schedule
Padre::Task implements the scheduling logic for your subclass. Simply callsttreedule
method to hae your task processed by the task manager.

Calling this multiple times will submit multiple jobs.

run
This is the method that will be called in the worker thredal must implement this in your subclass.

You must not interact with the W&UI directly from the verker thread. You may use Wx threacbats
only. TO DO: Experiment with this and document it.

prepare
In case you need to set up things in the main thread, you can implememage method which
will be called right before serialization for transfer to the assigned worker thread.

If prepare returns the stringoreak (case insensite), all further processing of the task will be
stopped and neitheun norfinish will be called. Ay other return values are generally ignored.

You do rot have o implement this method in the subclass.
finish
Quite likely, you need to actually use the results of your background task senm&hoe you cannot

directly communicate with the W&UI from the worker thread, this method is called from the main
thread after the task object has been transferred back to the main thread.

The first and only argument timish is the Padre main wingoobject.
You do rot have o implement this method in the subclass.

task_print
$task—>task_print("Hi this is immediately sent to the Padre output window\n");

Sends anwent to the main Padre thread and displays a message in the Padre outpwt windo

task_warn
$task—>task_warn("Hi this is immediately sent to the Padre output window\n");

Sends anwent to the main &dre thread and displays a message in the Padre outputwyiitostyle
bad.

post_event
This method allows you to easily post a Weerd to the main thread. First argument must be tieate
ID, second argument the data you want to pass tovilrd bandler.

5 E]

EEEA perivs.10.1 2010-06-02 2

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

Debian Squeeze man.m.sourcentral.org

Padre::Task(3pm) Use€Contributed Perl Documentation Pare::Task(3pm)

For a aomplete example, please check the codeaafre::Task::Example::WxEvent
You can set up a meevent ID in your Padre::Task subclassditis:

our $FUN_EVENT_TYPE : shared,;
BEGIN { $FUN_EVENT_TYPE = Wx::NewEventType(); }

Then you hee © stup the eent handler (for example in threpare() method. This should happen
in the main thread!

But watch out: You should not declare the same handler multiple times.
Wx::Event::EVT_COMMAND(
Padre—>ide—>wx->main,
_1,
$FUN_EVENT,
\&update_gui_with_fun

);

sub update_gui_with_fun {
my ($main, $event) = @_; @_=(); # hack to avoid "Scalars leaked"
my $data = $event->GetData();

}
After that, you can dispatcivents of typeSFUN_EVENT_TYPbBy simply running:

$self->post_event($FUN_EVENT_TYPE, $data);
NOTES AND CAVEATS

Since the task objects are transferred to thmrkev threads viaStorable::freeze() /
Storable::thaw() , you cannot put andata into the objects that cannot be serialized by
Storable . Tothe best of my knowledge, that includes file handles and code references.

SEE ALSO

The management of worker threads is implemented in the Padre::TaskManager class.
The transfer of the objects to and from the worker threads is implemented with Storable.

AUTHOR
Steffen Muellesmueller AT cpan DOT org

COPYRIGHT AND LICENSE
Copyright 2008-2010 The Padrevdi®pment team as listed in Padre.pm.

This program is free software; you can redistigbit and/or modify it under the same terms as Perl 5
itself.

EEEA perivs.10.1 2010-06-02 3

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

