
Padre::Task(3pm) UserContributed Perl Documentation Padre::Task(3pm)

NAME
Padre::Task − Padre Background Task API

SYNOPSIS
Create a subclass of Padre::Task which implements your background task:

package Padre::Task::Foo;

use base 'Padre::Task';

This is run in the main thread before being handed
off to a worker (background) thread. The Wx GUI can be
polled for information here.
If y ou don't need it, just inherit the default no−op.
sub prepare {

my $self = shift;
if (condition_for_not_running_the_task) {

return "BREAK";
}

return 1;
}

This is run in a worker thread and may take a long−ish
t ime to finish. It must not touch the GUI, except through
Wx events. TO DO: explain how this works
sub run {

my $self = shift;
Do something that takes a long time!
optionally print to the output window
$self−>print("Background thread says hi!\n");
return 1;

}

This is run in the main thread after the task is done.
It c an update the GUI and do cleanup.
You don't have to implement this if you don't need it.
sub finish {

my $self = shift;
my $main = shift;
c leanup!
return 1;

}

1;

From your code, you can then use this new background task class as follows. (new andschedule are
inherited.)

require Padre::Task::Foo;
my $task = Padre::Task::Foo−>new(some => 'data');
$task−>schedule; # hand off to the task manager

As a special case, any (arbitrarily nested and complex) data structure you put into your object under the
magicmain_thread_only hash slot will not be passed to the worker thread but become available
again whenfinish is called in the main thread. You can use this to pass references toGUI objects and
similar things to the finish event handler since these must not be accessed from worker threads.

However, you should be cautious when keeping references toGUI elements in your tasks, in case the
GUI wants to destroy them before your task returns.

Instead, it is better if yourfinish method knows how to relocate theGUI element from scratch (and
can safely handle the situation when theGUI element is gone, or has changed enough to make the task

perl v5.10.1 2010-06-02 1

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

Padre::Task(3pm) UserContributed Perl Documentation Padre::Task(3pm)

response irrelevent).

DESCRIPTION
This is the base class of all background operations in Padre. TheSYNOPSISexplains the basic usage,
but in a nutshell, you create a subclass, implement your own customrun method, create a new
instance, and callschedule on it to run it in a worker thread. When the scheduler has a free worker
thread for your task, the following steps happen:

The scheduler callsprepare on your object.
If your prepare method returns the string ’break’, all further processing is stopped immediately.
The scheduler serializes your object withStorable .
Your object is handed to the worker thread.
The thread deserializes the task object and callsrun() on it.
After run() is done, the thread serializes the object again and hands it back to the main thread.
In the main thread, the scheduler callsfinish on your object with the Padre main window object as
argument for cleanup.

During all this time, the state of your task object is retained!So anything you store in the task object
while in the worker thread is still there whenfinish runs in the main thread. (Confer theCAVEATS
section below!)

METHODS
new

Padre::Task provides a basic constructor for you to inherit. It simply stores all provided data in the
internal hash reference.

schedule
Padre::Task implements the scheduling logic for your subclass. Simply call theschedule
method to have your task processed by the task manager.

Calling this multiple times will submit multiple jobs.

run
This is the method that will be called in the worker thread.You must implement this in your subclass.

You must not interact with the WxGUI directly from the worker thread. You may use Wx thread events
only. TO DO: Experiment with this and document it.

prepare
In case you need to set up things in the main thread, you can implement aprepare method which
will be called right before serialization for transfer to the assigned worker thread.

If prepare returns the stringbreak (case insensitive), all further processing of the task will be
stopped and neitherrun nor finish will be called. Any other return values are generally ignored.

You do not have to implement this method in the subclass.

finish
Quite likely, you need to actually use the results of your background task somehow. Since you cannot
directly communicate with the WxGUI from the worker thread, this method is called from the main
thread after the task object has been transferred back to the main thread.

The first and only argument tofinish is the Padre main window object.

You do not have to implement this method in the subclass.

task_print
$task−>task_print("Hi this is immediately sent to the Padre output window\n");

Sends an event to the main Padre thread and displays a message in the Padre output window.

task_warn
$task−>task_warn("Hi this is immediately sent to the Padre output window\n");

Sends an event to the main Padre thread and displays a message in the Padre output window with style
bad .

post_event
This method allows you to easily post a Wx event to the main thread. First argument must be the event
ID, second argument the data you want to pass to the event handler.

perl v5.10.1 2010-06-02 2

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

Padre::Task(3pm) UserContributed Perl Documentation Padre::Task(3pm)

For a complete example, please check the code ofPadre::Task::Example::WxEvent .

You can set up a new event ID in your Padre::Task subclass like this:

our $FUN_EVENT_TYPE : shared;
BEGIN { $FUN_EVENT_TYPE = Wx::NewEventType(); }

Then you have to setup the event handler (for example in theprepare() method. This should happen
in the main thread!

But watch out: You should not declare the same handler multiple times.

Wx::Event::EVT_COMMAND(
Padre−>ide−>wx−>main,
−1,
$FUN_EVENT,
\&update_gui_with_fun

);

sub update_gui_with_fun {
my ($main, $event) = @_; @_=(); # hack to avoid "Scalars leaked"
my $data = $event−>GetData();

}

After that, you can dispatch events of type$FUN_EVENT_TYPEby simply running:

$self−>post_event($FUN_EVENT_TYPE, $data);

NOTES AND CAVEATS
Since the task objects are transferred to the worker threads viaStorable::freeze() /
Storable::thaw() , you cannot put any data into the objects that cannot be serialized by
Storable . To the best of my knowledge, that includes file handles and code references.

SEE ALSO
The management of worker threads is implemented in the Padre::TaskManager class.

The transfer of the objects to and from the worker threads is implemented with Storable.

AUTHOR
Steffen Muellersmueller AT cpan DOT org

COPYRIGHT AND LICENSE
Copyright 2008−2010 The Padre development team as listed in Padre.pm.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl 5
itself.

perl v5.10.1 2010-06-02 3

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+Padre::Task

