
GETOPT(3) LinuxProgrammer’s Manual GETOPT(3)

NAME
getopt, getopt_long, getopt_long_only, optarg, optind, opterr, optopt − Parse command-line options

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char * const argv[] ,
const char *optstring);

extern char * optarg;
extern int optind, opterr, optopt;

#include <getopt.h>

int getopt_long(int argc, char * const argv[] ,
const char *optstring,
const struct option *longopts, int * longindex);

int getopt_long_only(int argc, char * const argv[] ,
const char *optstring,
const struct option *longopts, int * longindex);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

getopt(): _POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE
getopt_long(), getopt_long_only(): _GNU_SOURCE

DESCRIPTION
The getopt() function parses the command-line arguments. Itsargumentsargc andargv are the argu-
ment count and array as passed to themain() function on program invocation. Anelement ofargv that
starts with '−' (and is not exactly "−" or "−−") is an option element. The characters of this element
(aside from the initial '−') are option characters.If getopt() is called repeatedly, it returns successively
each of the option characters from each of the option elements.

The variableoptind is the index of the next element to be processed inargv. The system initializes this
value to 1. The caller can reset it to 1 to restart scanning of the sameargv, or when scanning a new
argument vector.

If getopt() finds another option character, it returns that character, updating the external variableoptind
and a static variablenextcharso that the next call togetopt() can resume the scan with the following
option character orargv-element.

If there are no more option characters,getopt() returns −1.Thenoptind is the index in argv of the first
argv-element that is not an option.

optstring is a string containing the legitimate option characters. If such a character is followed by a
colon, the option requires an argument, sogetopt() places a pointer to the following text in the same
argv-element, or the text of the following argv-element, inoptarg. Two colons mean an option takes an
optional arg; if there is text in the currentargv-element (i.e., in the same word as the option name itself,
for example, "−oarg"), then it is returned inoptarg, otherwiseoptarg is set to zero. This is a GNU
extension. IfoptstringcontainsW followed by a semicolon, then−W foo is treated as the long option
−−foo. (The −W option is reserved by POSIX.2 for implementation extensions.) Thisbehavior is a
GNU extension, not available with libraries before glibc 2.

By default, getopt() permutes the contents ofargv as it scans, so that eventually all the nonoptions are
at the end.Tw o other modes are also implemented. If the first character ofoptstringis '+' or the envi-
ronment variablePOSIXLY_CORRECT is set, then option processing stops as soon as a nonoption
argument is encountered. If the first character ofoptstring is '−', then each nonoptionargv-element is
handled as if it were the argument of an option with character code 1. (This is used by programs that
were written to expect options and otherargv-elements in any order and that care about the ordering of
the two.) The special argument "−−" forces an end of option-scanning regardless of the scanning
mode.

GNU 2010-02-03 1

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+optind

GETOPT(3) LinuxProgrammer’s Manual GETOPT(3)

If getopt() does not recognize an option character, it prints an error message tostderr, stores the char-
acter inoptopt, and returns '?'.The calling program may prevent the error message by settingopterr to
0.

If getopt() finds an option character inargv that was not included inoptstring, or if it detects a missing
option argument, it returns '?' and sets the external variableoptoptto the actual option character. If the
first character (following any optional '+' or '−' described above) of optstring is a colon (':'), then
getopt() returns ':' instead of '?' to indicate a missing option argument. Ifan error was detected, and the
first character ofoptstring is not a colon, and the external variableopterr is nonzero (which is the
default),getopt() prints an error message.

getopt_long() and getopt_long_only()
The getopt_long() function works like getopt() except that it also accepts long options, started with
two dashes. (Ifthe program accepts only long options, thenoptstringshould be specified as an empty
string (""), not NULL.) Long option names may be abbreviated if the abbreviation is unique or is an
exact match for some defined option.A long option may take a parameter, of the form−−arg=param
or −−arg param.

longoptsis a pointer to the first element of an array ofstruct optiondeclared in<getopt.h>as

struct option {
const char *name;
int has_arg;
int *flag;
int val;

};

The meanings of the different fields are:

name is the name of the long option.

has_arg
is: no_argument (or 0) if the option does not take an argument;required_argument (or 1) if
the option requires an argument; oroptional_argument (or 2) if the option takes an optional
argument.

flag specifies how results are returned for a long option.If flag is NULL, then getopt_long()
returnsval. (For example, the calling program may setval to the equivalent short option char-
acter.) Otherwise,getopt_long() returns 0, andflag points to a variable which is set toval if
the option is found, but left unchanged if the option is not found.

val is the value to return, or to load into the variable pointed to byflag.

The last element of the array has to be filled with zeros.

If longindexis not NULL, it points to a variable which is set to the index of the long option relative to
longopts.

getopt_long_only() is like getopt_long(), but '−' as well as "−−" can indicate a long option.If an
option that starts with '−' (not "−−") doesn’t match a long option, but does match a short option, it is
parsed as a short option instead.

RETURN VALUE
If an option was successfully found, thengetopt() returns the option character. If all command-line
options have been parsed, thengetopt() returns −1.If getopt() encounters an option character that was
not inoptstring, then '?' is returned.If getopt() encounters an option with a missing argument, then the
return value depends on the first character inoptstring: if it is ' :', then ':' is returned; otherwise '?' is
returned.

getopt_long() andgetopt_long_only() also return the option character when a short option is recog-
nized. For a long option, they returnval if flag is NULL, and 0 otherwise.Error and −1 returns are the
same as forgetopt(), plus '?' for an ambiguous match or an extraneous parameter.

ENVIRONMENT
POSIXLY_CORRECT

If this is set, then option processing stops as soon as a nonoption argument is encountered.

GNU 2010-02-03 2

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+optind

GETOPT(3) LinuxProgrammer’s Manual GETOPT(3)

_<PID>_GNU_nonoption_argv_flags_
This variable was used bybash(1) 2.0 to communicate to glibc which arguments are the
results of wildcard expansion and so should not be considered as options. This behavior was
removed in bash(1) version 2.01, but the support remains in glibc.

CONFORMING TO
getopt():

POSIX.2 and POSIX.1-2001, provided the environment variablePOSIXLY_CORRECT is
set. Otherwise,the elements ofargv aren’t really const, because we permute them.We pre-
tend they’re const in the prototype to be compatible with other systems.

The use of '+' and '−' inoptstringis a GNU extension.

On some older implementations,getopt() was declared in<stdio.h>. SUSv1 permitted the
declaration to appear in either<unistd.h> or <stdio.h>. POSIX.1-2001 marked the use of
<stdio.h> for this purpose as LEGACY. POSIX.1-2001 does not allow the declaration to
appear in<stdio.h>.

getopt_long() andgetopt_long_only():
These functions are GNU extensions.

NOTES
A program that scans multiple argument vectors, or rescans the same vector more than once, and wants
to make use of GNU extensions such as '+' and '−' at the start ofoptstring, or changes the value of
POSIXLY_CORRECT between scans, must reinitializegetopt() by resettingoptind to 0, rather than
the traditional value of 1. (Resetting to 0 forces the invocation of an internal initialization routine that
rechecksPOSIXLY_CORRECT and checks for GNU extensions inoptstring.)

BUGS
The POSIX.2 specification ofgetopt() has a technical error described in POSIX.2 Interpretation 150.
The GNU implementation (and probably all other implementations) implements the correct behavior
rather than that specified.

EXAMPLE
The following trivial example program usesgetopt() to handle two program options:−n, with no asso-
ciated value; and−t val, which expects an associated value.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int flags, opt;
int nsecs, tfnd;

nsecs = 0;
tfnd = 0;
flags = 0;
while ((opt = getopt(argc, argv, "nt:")) != −1) {

switch (opt) {
case 'n':

flags = 1;
break;

case 't':
nsecs = atoi(optarg);
tfnd = 1;
break;

default: /* '?' */
fprintf(stderr, "Usage: %s [−t nsecs] [−n] name\n",

argv[0]);

GNU 2010-02-03 3

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+optind

GETOPT(3) LinuxProgrammer’s Manual GETOPT(3)

exit(EXIT_FAILURE);
}

}

printf("flags=%d; tfnd=%d; optind=%d\n", flags, tfnd, optind);

if (optind >= argc) {
fprintf(stderr, "Expected argument after options\n");
exit(EXIT_FAILURE);

}

printf("name argument = %s\n", argv[optind]);

/* Other code omitted */

exit(EXIT_SUCCESS);
}

The following example program illustrates the use ofgetopt_long() with most of its features.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for exit */
#include <getopt.h>

int
main(int argc, char **argv)
{

int c;
int digit_optind = 0;

while (1) {
int this_option_optind = optind ? optind : 1;
int option_index = 0;
static struct option long_options[] = {

{"add", 1, 0, 0},
{"append", 0, 0, 0},
{"delete", 1, 0, 0},
{"verbose", 0, 0, 0},
{"create", 1, 0, 'c'},
{"file", 1, 0, 0},
{0, 0, 0, 0}

};

c = getopt_long(argc, argv, "abc:d:012",
long_options, &option_index);

if (c == −1)
break;

switch (c) {
case 0:

printf("option %s", long_options[option_index].name);
if (optarg)

printf(" with arg %s", optarg);
printf("\n");
break;

case '0':
case '1':
case '2':

GNU 2010-02-03 4

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+optind

GETOPT(3) LinuxProgrammer’s Manual GETOPT(3)

if (digit_optind != 0 && digit_optind != this_option_optind)
printf("digits occur in two different argv−elements.\n");

digit_optind = this_option_optind;
printf("option %c\n", c);
break;

case 'a':
printf("option a\n");
break;

case 'b':
printf("option b\n");
break;

case 'c':
printf("option c with value '%s'\n", optarg);
break;

case 'd':
printf("option d with value '%s'\n", optarg);
break;

case '?':
break;

default:
printf("?? getopt returned character code 0%o ??\n", c);

}
}

if (optind < argc) {
printf("non−option ARGV−elements: ");
while (optind < argc)

printf("%s ", argv[optind++]);
printf("\n");

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getsubopt(3), feature_test_macros(7)

COLOPHON
This page is part of release 3.27 of the Linuxman-pages project. A description of the project, and
information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

GNU 2010-02-03 5

man.m.sourcentral.orgDebian Squeeze

https://man.m.sourcentral.org/debian-squeeze/3+optind

