Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

NAME
ost::Thread —

Every thread ofxecution in an application is created by instantiating an object of a clagsddieom
theThread class.

SYNOPSIS
#i ncl ude <t hread. h>

Inherited byost::PosixThread ost::SerialService ost::SocketServiceost:: TCPSession
ost::ThreadQueueg ost::TTYSession and ost::UnixSession

Public Types

enumThrow { throwNothing, thr owObject, thr owException}
How to raise error.

enumCancel{ cancellnitial = 0, cancelDeferred= 1, cancellmmediate cancelDisabled
cancelManual cancelDefault= cancelDeferred }
How work cancellation.

enumSuspend{ suspendEnablesuspendDisablg
How work suspend.

typedef enunost::Thread:: Thr ow Throw
How to raise error.

typedef enunost::Thread::Cancel Cancel
How work cancellation.

typedef enunost::Thread::Suspend Suspend
How work suspend.

Public Member Functions
Thread (bool isMain)
This is actually a special constructor that is used to create a thread 'object’ for the current
execution context when that context is not created via an instance of a dEnnezl object
itself.
Thread (int pri=0, size_t stack=0)
When a thread object is contructed, awtaread of execution context is created.
Thread (constThread &th)
A thread of execution can also be specified by cloning an existing thread.
virtual “"Thread ()
The thread destructor should clear up any resources that have been allocated by the thread.
int start (Semaphore*start=0)
When a ne thread is created, it does not begin immediate execution.
int detach(Semaphore*start=0)
Start a nev thread as 'detached’.
Thread * getParent(void)
Gets the pointer to thEhread class whit created the current thread object.
void suspend(void)
Suspends execution of the selected thread.
void resume(void)
Resumes execution of the selected thread.
Cancel getCancelvoid)
Used to retrieve the cancellation mode in effect for the selected thread.
boolisRunning (void) const
Veifies if the thread is still running or has already been terminated but not yet deleted.
boolisDetached(void) const
Che if this thread is detached.
void join (void)
Blocking call whit unlocks when thread terminates.
boolisThread (void) const
Tests to see if the current execution context is the same as the specified thread object.
cctid_t getld (void) const
Get system thread numeric identifier.
const char 'getName(void) const

.EI.' FIE
El-i ;-E GNU CommonC++ 1 Feb 2010 1

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Lr

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

Get the name string for this thread, to use in debug rgessa

Static Public Member Functions

staticThread * get(void)
static voidsetStack(size_t size=0)
Set base st&dimit befoe manual sta& szes have effect.
static voidsleep(timeout_t msec)
A thread-safe sleep call.
static voidyield (void)
Yields the current thread’CPU time slice to allow another thread to begin immediate execution.
staticThr ow getException(void)
Get exception mode of the current thread.
static voidsetException(Thr ow mode)
Set exception mode of the current thread.
staticCancel enterCancelvoid)
This is used to help build wrapper functions in libraries around system calls that should behave
as cancellation points but don't.
static voidexitCancel(Cancelcancel)
This is used to restera ancel block.

Protected Member Functions

void setName(const char *text)
Set the name of the current thread.
virtual voidrun (void)=0
All threads execute by deriving the Run methothoéad.
virtual voidfinal (void)
A thread that is self terminatingither by invokingexit() or leaving it'srun(), will have this
method called.
virtual voidinitial (void)
The initial method is called by a newly created thread when it starts execution.
virtual void * getExtended(void)
SincegetParent()andgetThread() only refer to an object of thEhread 'base’ type this
virtual method can be replaced in a derived class with something that returns data specific to
the derived class that can still be accessed through the pointer returmgedRarent() and
getThread().
virtual void notify (Thread *)
When a thread terminates, it now sends a notification rgedséhe parent thread which
created it.
void exit (void)
Used to properly exit from @hread derivedrun() or initial() method.
void sync(void)
Used to wait for a join or cancel, in place of explicit exit.
booltestCancel(void)
test a cancellation point for deferred thread cancellation.
void setCancel(Cancelmode)
Sets thread cancellation mode.
void setSuspendSuspendmode)
Sets the thread'ability to be suspended from execution.
void terminate (void)
Used by another thread to terminate the current thread.
void clrParent (void)
clear parent thread relationship.

Friends

classPosixThread
classDummyThread
classCancellation
classpostream_type
classSlog
classThreadlmpl

EL5E
EE:E GNU CommonC++ 1 Feb 2010 2

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Lr

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

void operator++ (Thread &th)
Signal the semaphethat the specified thread is waiting for befeeegnning execution.
void operator-- (Thread &th)

Detailed Description

Every thread ofxecution in an application is created by instantiating an object of a clagsdieom
theThread class.

Classes dered from Thread must implement theun() method, which specifies the code of the thread.

The bas&hread class supports encapsulation of the generic threading methods implemented on
various target operating systems. This includes the ability to start and stop threads in a synchronized
and controllable mannghe ability to specify threadkecution priority and thread specific 'system

call’ wrappers, such as for sleep and yield. A thread exception is thrown if the thread cannot be created.
Threading was the first part of Common C++ | wrote, back when it was still the APE.|Xdsagpal

for Common C++ threading has been to mtteading as natural and easy to use in C++ application
development as threading is invda With this said, one does not need to use threading at all to take
advantage of Common C++. Hoveg, dl Common C++ classes are designed at least to be thread-
awael/thread-safe as appropriate and necessary.

Common C++ threading is currently built either from the Posix 'pthread’ library or using the win32
SDK. In that the Posix 'pthread’ draft has gone throughymewisions, and mansystem

implementations are only marginally compliant, amehehen usually in different ways, | wrote a large
series of autoconf macros found in ost_pthread.m4 which handle the task of identifying which pthread
features and capabilities your target platform supports. In the process | learned much about what
autoconf can and cannot do for you..

Currently the GNU Portabl€hread library (GNU pth) is not directly supported in Common C++.

While GNU 'Pth’ doesrt offer direct natie threading support or benefit from SMP hardware,yn@din

the design advantages of threading can be gained fromsdt, and the Pth pthread 'emulation’ library
should be usable with Common C++. In the future, Common C++ will directly support Pth, as well as
0S/2 and BeOS nat threading API's.

Common C++ itself defines a fairly 'neutral’ threading model that is not tiedytepaeific API such
as pthread, win32, etc. This neutral thread model is contained in a series of classes which handle
threading and synchronization and which may be used together to build reliable threaded applications.

Common C++ defines application specific threads as objects which amsl derim the Common C++
"Thread’ base class. At minimum the 'Run’ method must be implemented, and this method essentially
is the 'thread’, for it is xecuted within the xecution context of the thread, and when the Run method
terminates the thread is assumed teeHarminated.

Common C++ allows one to specify the running priority of a newly created threaderddatie

'parent’ thread which is the thread that ¥e@uting when the constructor is called. Since most newer
C++ implementations do not alloone to call virtual constructors or virtual methods from constructors,
the thread must be 'started’ after the constructor returns. This is done either by defining a ’'starting’
semaphore object that one or more newly created thread objects can wait uponyaikibg an

explicit 'start’” member function.

Threads can be 'suspended’ and resumed’. As this behavior is not defined in the Posix 'pthread’
specification, it is often emulated through signals. Typically SIGUSR1 will be used for this purpose in
Common C++ applications, depending in the target platform. On Linux, since threads are indeed
processes, SIGSTP and SIGCONT can be used. On solaris, the Solaris thread library supports suspend
and resume directly.

Threads can be canceled. Not all platforms support the concept of externally cancelable threads. On
those platforms and APl implementations that do not, threads are typically canceled through the action
of a signal handler.

As noted earliethreads are considered running until the 'Run’ method returns, or until a cancellation
request is made. Common C++ threads can contmkiey respond to cancellation, using
setCancellation()Cancellation requests can be ignored, set to occur only when a cancellation "point’
has been reached in the code, or occur immedidtietgads can also exit by returning from Run() or

by invoking the Exit() method.

Generally it is a good practice to initializeyaresources the thread may require within the constructor

EL5E
EE:E GNU CommonC-++ 1 Feb 2010 3

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

of your derved thread class, and to purge or restorgalocated resources in the destructarmost
cases, the destructor will breeuted after the thread has terminated, and hencexedlee within the
context of the thread that requested a join rather than in the context of the thread that is being
terminated. Most destructors in dexd thread classes should first call Terminate() toerske the
thread has stopped running before releasing resources.

A Common C++ thread is normally canceled by deleting the thread object. The process of deletion
invokes the threads destructoyand the destructor will then perform a ’join’ against the thread using the
Terminate() function. This behavior is notalys desirable since the thread may block itself from
cancellation and block the current 'delete’ operation from completing. One can alternatledy in
Terminate() directly before deleting a thread object.

When a gien Common C++ thread exits ondtown through its Run() method, a 'Final’ method will
be called. This Final method will be called while the thread is 'detached'. If a thread object is
constructed through a 'new’ operatitis final method can be used to 'self delete’ when done, and
allows an independent thread to construct and veriteelf autonomously.

A special global functiongetThread(), is provided to identify the thread object that represents the
current éecution context you are running undehis is sometimes needed to @efisignals to the

correct thread. Since all thread manipulation should be done through the Common C++ (base) thread
class itself, this provides the same functionality as thingspithread selffor Common C++.

All Common C++ threads ra an exception ‘'mode’ which determines their behavior when an
exception is thrown by another Common C++ class. Extensions to Common C++ should respect the
current exception mode and ugEtException()to determine what to do when thare about to throw

an object. The default exception mode (defined inTtiread() constructor) is throwObject, which
causes a pointer to an instance of the class where the error occured to be thrown. Other exception
modes are throwException, which causes a class-specific exception class to be thrown, and
throwNothing, which causes errors to be ignored.

As an example, you could try to call tBecketclass with an ivalid address that the system could not
bind to. This would cause an object of typmcket* to be thrown by default, as the default exception
mode is throwObject. If you call setException(throwException) before the bad call$od¢ket
constructaran dject of typeSockException(the exception class for claSscke) will be thrown
instead.

To determine what exception class is thrown bywemyiCommon C++ class when the exception mode
is set to throwException, search the source files for the class you are interested in for a class which
inherits directly or indirectly from clagsxception. This is the exception class which would be thrown
when the exception mode is set to throwException.

The advantage of using throwException versus throwObject is that more informatiaiteisia to the
programmer from the thrown object. All class-specific exceptions inherit fromEetasgtion, which
provides a getString() method which can be called to get a human-readable error string.

Common C++ threads are often aggted into other classes to provide services that are 'managed’
from or operate within the context of a threaggnewithin the Common C++ frameork itself. A good
example of this is th& CPSessiorclass, which essentially is a combination of a TCP client connection
and a separate thread the user can define by deriving a class with a Run() method to handle the
connected service. This aggeton logically connects the successful allocation ofvargresource

with the construction of a thread to manage and perform operations for said resource.

Threads are also used in 'service pools’. In Common C++, a service pool is one or more threads that
are used to manage a set of resources. While Common C++ does not provide a direct 'pool’ class, it
does provide a model for their implementation, usually by constructing an array of thread 'service’
objects, each of which can then be assigned the nexitiséance of a géen resource in turn or
algorithmically.

Threads hee sgnal handlers associated with themveéal signal types are 'predefined’ and/ba

special meaning. All signal handlers are defined as virtual member functionsToféiael class which

are called when a specific signal is rgegifor a given thread. The 'SIGPIPE\ent is defined as a
'Disconnect’ @ent since its normally associated with a socket disconnecting or broken fifo. The

Hangup() method is associated with the SIGHUP signal. All other signals are handled through the more
generic Signal().

.EI.' FIE
El-i ;-E GNU CommonC++ 1 Feb 2010 4

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

Incidently, unlike Rosix, the win32 API has no concept of signals, and certainly no means to define or
deliver signals on a per-thread basis. For this reason, no signal handling is supported or emulated in the
win32 implementation of Common C++ at this time.

In addition toTCPStream, there is aT CPSessiorclass which combines a thread witi@PStream
object. The assumption made BgPSessioris that one will service each TCP connection with a
separate thread, and this makes sense for systems where extended connections may be maintained and

comple protocols are being useda TCP.

Author:
David Sugar <dyfet Aostel DO com> base class used to derdl threads of gecution.

Examples:
bugl.cpp bug2.cpp tcpservice.cpp tepstrl.cpp, threadl.cpp, andthread2.cpp.

Member Typedef Documentation
typedef enum ost::Thread::Cancel ost::Thread::Cancel
How work cancellation.

typedef enum ost::Thread::Suspend ost::Thead::Suspend
How work suspend.

typedef enum ost::Thread::Throw ost::Thread::Thr ow
How to raise error.

Member Enumeration Documentation
enum ost::Thread::Cancel
How work cancellation.

Enumerator:

cancellnitial
used internallydo rot use

cancelDeferred
exit thread on cancellation pointsuch as yield

cancellmmediate
exit befor cancellation

cancelDisabled
ignore cancellation

cancelManual
unimplemented (working in progress)

cancelDefault
default you should use this for compatibility instead of deferred

enum ost::Thread::Suspend
How work suspend.

Enumerator:

suspendEnable
suspend enabled

suspendDisable
suspend disabled, Suspend do nothing

enum ost::Thread::Throw
How to raise error.

Enumerator:

throwNothing
continue without throwing error

throwObject
throw object that cause error (thwahis)

.El.' I"IE
EE:E GNU CommonC-++ 1 Feb 2010

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Debian Squeeze

man.m.sourcentral.org
ost::Thread(3)

ost::Thread(3)

throwException
throw an dbject relatve © error
Constructor & Destructor Documentation
ost::Thread::Thread (bool isMain)

This is actually a special constructor that is used to create a thread 'object’ for the cmetidre

context when that context is not created via an instance ofvedi€hiread object itself. This
constructor does not support First.

Parameters:
isMainbool used if the main 'thread’ of the application.
ost::Thread::Thread (int pri = 0, sze_t stack =0)
When a thread object is contructed, wiieread of gecution context is created. This constructor

allows basic properties of that context (thread pripsiack space, etc) to be defined. The starting

condition is also specified for whether the thread is to wait on a semaphore before bagmitigre
or wait until it's gart method is called.

Parameters:

pri thread base priority relag o it's parent.
stackspace as needed in some implementations.

ost::Thread::Thread (const Thread & th)

A thread of gecution can also be specified by cloning an existing thread. The existing thread’s
properties (cancel mode, prioritc), are also duplicated.

Parameters:
th currently executing thread object to clone.
virtual ost::Thread::"Thread () [virtual]

The thread destructor should clear up Esources that kia keen allocated by the thread. The

desctructor of a daréd thread should begin with Terminate() and is presumed to Keente within
the context of the thread causing terminaton.

Member Function Documentation
void ost::Thread::clrParent (void) [i nl i ne,
clear parent thread relationship.

int ost::Thread::detach (Semaphoe * start = 0)

Start a ne thread as 'detached’. This is an altewestart() method that resolves some issues with
later glibc implimentations which incorrectly impliment self-detach.

Returns:
error code if gecution fails.
Parameters:
start optional starting semaphore to alternately use.
Examples:
thread2.cpp.

pr ot ect ed]

static Cancel ost::Thread::enterCancel (void) [st ati c]

This is used to help build wrapper functions in libraries around system calls that shoul dseha
cancellation points but donReturns:

saved cancel type.
void ost::Thread::exit (void) [pr ot ect ed]

Used to properly exit from &hread derived run() orinitial() method. Terminatescecution of the
current thread and calls the ded dassedinal() method.

Examples:
bug2.cpp andtcpservice.cpp

static void ost::Thread::exitCancel (Cancel cancel)[st ati c]
This is used to restore a cancel bldeirameters:
canceltype that was sed.

OEMI0)

L 1
El-i ;-E GNU CommonC++

1 Feb 2010

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Lr

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

virtual void ost::Thread::final (void) [protected, virtual]
A thread that is self terminating, either byadking exit() or leaving it'srun(), will have this method
called. It can be used to self delete the current object assuming the object was created avithhae
heap rather than stack local, hence one may often see final defined as 'delete thisved shdesid
class. A final method, while running, cannot be terminated or cancelled by another thread. Final is
called for all cancellation type\en immediate).

You can safe delete thread (‘delete this’) class on final, but you should exit ASAP (or do not try to call
CommonC++ methods...)

Note:
A thread cannot delete its own context or join itsedfnke a tiread that is a self running object
that self-deletes, one has to detach the thread by dstagh()instead oftart().

See also:
exit

run
Reimplemented iost::ThreadQueue

Examples:
tcpthread.cpp.

static Thread* ost::Thread::get (void) [stati c]
Referenced by ost::getThread().

Cancel ost::Thread::getCancel (void) [i nl i ne]
Used to retrige the cancellation mode in effect for the selected thrieatlirns:
cancellation mode constant.

static Throw ost::Thread::getException (void) [stati c]
Get exception mode of the current thre@dturns:
exception mode.

virtual void* ost::Thread::getExtended (void) [protected, virtual]
SincegetParent()andgetThread() only refer to an object of thEhread 'base’ type, this virtual
method can be replaced in a gedi dass with something that returns data specific to thealkdass
that can still be accessed through the pointer returngét®arent()andgetThread(). Returns:
pointer to dekied dass specific data.

cctid_t ost::Thread::getld (void) const
Get system thread numeric identifi@eturns:
numeric identifier of this thread.

const char* ost::Thread::getName (void) const[i nl i ne]
Get the name string for this thread, to use in debug messatass:
debug name.

Thread* ost::Thread::getParent (void) [i nl i ne]
Gets the pointer to thehread class which created the current thread obfeeturns:
aThread *, or '(Thread *)this’ if no parent.

virtual void ost::Thread::initial (void) [protected, virtual]
The initial method is called by a newly created thread when it stetaten. This method is ran with
deferred cancellation disabled by default. The Initial method/én @ ®parate handler so that it can
create temporary objects orsitwn stack frame, rather than having objects createdmf) that are
only needed by startup and yet continue to consume stack space.

See also:
run

final
Reimplemented inst:: TCPSessionand ost::UnixSession

bool ost::Thread::isDetached (void) const
Check if this thread is detaché®eturns:
true if the thread is detached.

EE;’E
[m] >y GNU CommonC++ 1 Feb 2010 7

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Lr

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

bool ost::Thread::isRunning (void) const
Verifies if the thread is still running or has already been terminated but not yet deketi@ths:
true if the thread is stilbecuting.

bool ost::Thread::isThread (void) const
Tests to see if the currentecution context is the same as the specified thread oBjetttns:
true if the current context is this object.

void ost::Thread::join (void)
Blocking call which unlocks when thread terminates.

virtual void ost::Thread::notify (Thread *) [protected, virtual]
When a thread terminates, ittngends a notification message to the parent thread which created it.
The actual use of this notification is left to be defined in aetbdass.

Parameters:
- the thread that has terminated.

void ost::Thread::resume (void)
Resumesxecution of the selected thread.

virtual void ost::Thread::run (void) [protected, pure virtual]
All threads &ecute by deriving the Run method Tfiread. This method is called after Initial to begin
normal operation of the thread. If the method terminates, then the thread will also terminate after
notifying it's parent and calling i$ Final() method.

See also:
Initial
Examples:

bugl.cpp bug2.cpp tcpservice.cpp tepstrl.cpp, tcpthread.cpp, threadl.cpp, and
thread2.cpp.

void ost::Thread::setCancel (Cancel mode)[pr ot ect ed]
Sets thread cancellation mode. Threads can either be set immune to termination (cancelDisabled), can
be set to terminate when reaching specific 'thread cancellation points’ (cancelDeferred) or immediately
when Terminate is requested (cancellmmediate).

Parameters:
modefor cancellation of the current thread.

static void ost::Thread::setException (Throw mode) [st ati c]
Set exception mode of the current threReturns:
exception mode.

void ost::Thread::setName (const char * text) [pr ot ect ed]
Set the name of the current thread. If the name is passed as NULL, then the default name is set (usually
object pointer).

Parameters:
texthame to use.

static void ost::Thread::setStack (size tsize 8) [inline, static]
Set base stack limit before manual stack sizee Heect.Parameters:
sizestack size to set, or use 0 to clear autostack.

void ost::Thread::setSuspend (Suspend mode] pr ot ect ed]
Sets the thread'aility to be suspended fronxecution. The thread may eithendgasispend enabled
(suspendEnable) or disabled (suspendDisable).

Parameters:
modefor suspend.

static void ost::Thread::sleep (timeout_t msec)[st ati c]
A thread-safe sleep call. On most Posix systems, 'sleep()’ is implimented with SIGALRM making it
unusable from multipe threads. Pthread libraries often define an alternate 'sleep’ handler such as
usleep(), nanosleep(), or nap(), that is thread safe, and also offers a higher timer resolution.

Parameters:

EL5E
EE:E GNU CommonC-++ 1 Feb 2010 8

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

Debian Squeeze man.m.sourcentral.org

ost::Thread(3) ost::Thread(3)

msedimeout in milliseconds.

int ost::Thread::start (Semaphore * start = 0)
When a ne thread is created, it does not begin immedigéewtion. This is because the ded dass
virtual tables are not properly loaded at the time the C++ object is created within the constructor itself,
at least in some compiler/system combinations. The thread can either be told to wait for an external
semaphore, or it can be started directly after the constructor completes by caliitagt{henethod.

Returns:
error code if gecution fails.

Parameters:
start optional starting semaphore to alternately use.

Examples:
tcpservice.cpp and tcpstrl.cpp.

void ost::Thread::suspend (void)
Suspends»ecution of the selected thread. Pthreads do not normally support suspendable threads, so
the behavior is simulated with signals. On systems such as Linux that define threads as processes,
SIGSTOP and SIGCONT may be used.

void ost::Thread::sync (void) [pr ot ect ed]
Used to wait for a join or cancel, in place of explicit exit.

void ost::Thread::terminate (void) [pr ot ect ed]
Used by another thread to terminate the current thread. Termination actually occurs based on the
currentsetCancel()mode. When the current thread does terminate, control is returned to the requesting
threadterminate() should alvays be called at the start ofyadestructor of a class deed from
Thread to assure the remaining part of the destructor is called without the threaxestiliireg.

bool ost::Thread::testCancel (void) [pr ot ect ed]
test a cancellation point for deferred thread cancellation.

static void ost::Thread::yield (void) [st ati c]
Yields the current threadCPU time slice to allw another thread to begin immediateseution.

Friends And Related Function Documentation
friend class Cancellation [f ri end]
friend class DummyThread [f ri end]
void operator++ (Thread & th) [fri end]
Signal the semaphore that the specified thread is waiting for before begixetintan. Parameters:
th specified thread.

void operator-- (Thread & th) [fri end]

friend class PosixThread [f ri end]

friend class postream_type[f ri end]

friend class Slog [fri end]

friend class Threadlmpl [f ri end]
Reimplemented iost::PosixThread

Author
Generated automatically by Doxygen for GNU CommonC++ from the source code.

.El.' I"IE
EE:E GNU CommonC-++ 1 Feb 2010 9

https://man.m.sourcentral.org/debian-squeeze/3+ost_Thread

