
BIND(2) Linux Programmer’s Manual BIND(2)

NAME
bind − bind a name to a socket

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int bind(int sockfd , const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created withsocket(2), it exists in a name space (address family) but has no address
assigned to it.bind() assigns the address specified byaddr to the socket referred to by the file descrip-
tor sockfd. addrlen specifies the size, in bytes, of the address structure pointed to byaddr. Tradition-
ally, this operation is called “assigning a name to a socket”.

It is normally necessary to assign a local address usingbind() before aSOCK_STREAM socket may
receive connections (seeaccept(2)).

The rules used in name binding vary between address families. Consultthe manual entries in Section 7
for detailed information.For AF_INET, see ip(7); for AF_INET6, see ipv6(7); for AF_UNIX, see
unix(7); for AF_APPLETALK, see ddp(7); for AF_PACKET, see packet(7); for AF_X25, see
x25(7); and forAF_NETLINK, seenetlink(7).

The actual structure passed for theaddr argument will depend on the address family. The sockaddr
structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

}

The only purpose of this structure is to cast the structure pointer passed inaddr in order to avoid com-
piler warnings. SeeEXAMPLE below.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES

The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket address struc-
ture, but, upon attempting to bind to an ephemeral port, it was determined that all port num-
bers in the ephemeral port range are currently in use. See the discussion of
/proc/sys/net/ipv4/ip_local_port_range ip(7).

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, oraddr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptorsockfd does not refer to a socket.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

Linux 2016-12-12 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+bind


BIND(2) Linux Programmer’s Manual BIND(2)

EACCES
Search permission is denied on a component of the path prefix.(See alsopath_resolu-
tion(7).)

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

EFAULT
addr points outside the user’s accessible address space.

ELOOP
Too many symbolic links were encountered in resolvingaddr.

ENAMETOOLONG
addr is too long.

ENOENT
A component in the directory prefix of the socket pathname does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EROFS
The socket inode would reside on a read-only filesystem.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (bind() first appeared in 4.2BSD).

NOTES
POSIX.1 does not require the inclusion of<sys/types.h>, and this header file is not required on Linux.
However, some historical (BSD) implementations required this header file, and portable applications
are probably wise to include it.

For background on thesocklen_t type, seeaccept(2).

BUGS
The transparent proxy options are not described.

EXAMPLE
An example of the use ofbind() with Internet domain sockets can be found ingetaddrinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX) domain, and
accept connections:

#include <sys/socket.h>
#include <sys/un.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MY_SOCK_PATH "/somepath"
#define LISTEN_BACKLOG 50

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])
{

int sfd, cfd;
struct sockaddr_un my_addr, peer_addr;
socklen_t peer_addr_size;

Linux 2016-12-12 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+bind


BIND(2) Linux Programmer’s Manual BIND(2)

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == −1)

handle_error("socket");

memset(&my_addr, 0, sizeof(struct sockaddr_un));
/* Clear structure */

my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH,

sizeof(my_addr.sun_path) − 1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(struct sockaddr_un)) == −1)

handle_error("bind");

if (listen(sfd, LISTEN_BACKLOG) == −1)
handle_error("listen");

/* Now we can accept incoming connections one
at a time using accept(2) */

peer_addr_size = sizeof(struct sockaddr_un);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,

&peer_addr_size);
if (cfd == −1)

handle_error("accept");

/* Code to deal with incoming connection(s)... */

/* When no longer required, the socket pathname, MY_SOCK_PATH
should be deleted using unlink(2) or remove(3) */

}

SEE ALSO
accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3), getifaddrs(3), ip(7),
ipv6(7), path_resolution(7), socket(7), unix(7)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2016-12-12 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+bind

