fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)
NAME

fcntl — manipulate file descriptor
SYNOPSIS

#include <unistd.h>
#include <fcntl.h>

int fentl(int fd, int cmd, ... /* arg */);

DESCRIPTION
fentl () performs one of the operations describedweln the open file descriptdd. The operation is
determined bymd

fentl() can talke an optional third agument. Whetheor not this argument is required is determined by
cmd The required argument type is indicated in parentheses aftecealfiame (in most cases, the
required type isnt, and we identify the gyument using the nanag), or void is specified if the gu-
ment is not required.

Certain of the operations b&lcare supported only since a particular Linux kerngdsion. Thepre-
ferred method of checking whether the haestnlel supports a particular operation is teoke fcntl ()
with the desire&mdvalue and then test whether the call failed vatINVAL , indicating that the de-
nel does not recognize this value.

Duplicating a file descriptor
F_DUPFD (int)
Duplicate the file descriptdd using the lowest-numberedalable file descriptor greater than
or equal toarg. This is diferent fromdup2(2), which uses exactly the file descriptor speci-
fied.

On success, the wdile descriptor is returned.
Seedup(2) for further details.

F _DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-omeae flag for the duplicate file descriptor
Specifying this flag permits a program teoi@ an additionafcntl () F_SETFD operation to
set theFD_CLOEXEC flag. For an explanation of whthis flag is useful, see the description
of O_CLOEXEC in open(2).

File descriptor flags
The following commands manipulate the flags associated with a file descitioently, only one
such flag is definedcD_CLOEXEC, the close-on-eec flag. IftheFD_CLOEXEC bit is set, the file
descriptor will automatically be closed during a successfatvé2). (If the execvg?) fails, the file
descriptor is left open.)f the FD_CLOEXEC bit is not set, the file descriptor will remain open across
anexecvé?).

F_GETFD (void)

Return (as the function result) the file descriptor flagsis ignored.
F_SETFD (int)

Set the file descriptor flags to the value specifiedrgy

In multithreaded programs, usitfigntl() F_SETFD to set the close-onxec flag at the same time as
another thread performsfark (2) plusexecvé?2) is vulnerable to a race condition that may uninten-
tionally leak the file descriptor to the prograreauted in the child processSee the discussion of the
O_CLOEXEC flag inopen(2) for details and a remedy to the problem.

File status flags
Each open file description has certain associated status flags, initialispdr) and possibly modi-
fied byfcntl(). Duplicatedfile descriptors (made wittiup(2), fcntl(F_DUPFD),fork (2), etc.) refer to
the same open file description, and thus share the same file status flags.

The file status flags and their semantics are descrilegukin2).

Linux 2016-10-08 1

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

F_GETFL (void)
Return (as the function result) the file access mode and the file statuarfidgsgnored.

F_SETFL (int)
Set the file status flags to thelwe specified byarg. File access modeQ RDONLY,
O_WRONLY, O_RDWR) and file creation flags (i.eQ_CREAT, O_EXCL, O_NOCTTY,
O_TRUNC) in arg are ignored. On Linux, this command can change onl\Oth&PPEND,
O_ASYNC, O_DIRECT, O_NOATIME, and O_NONBLOCK flags. Itis not possible to
change th® DSYNCandO_SYNCflags; see BUGS, belo

Advisory record locking
Linux implements traditional ("process-associated") UNIX record locks, as standardized by POSIX.
For a Linux-specific alternatie with better semantics, see the discussion of open file description locks
below.

F SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for timeace of
record locks (also kwen as byte-range, file-segment, or file-region locks). The thipdnaent,ock, is
a pointer to a structure that has at least the following fields (in unspecified order).

struct flock {

short |_type; /* Type of lock: F_RDLCK,
F_WRLCK, F_UNLCK */

short |_whence; /* He to interpret |_start:
SEEK_SETSEEK_CUR, SEEK_END */

off tl start; /* Starting offset for lock */

off t1 len; /* Number of bytes to lock */

pid_tI_pid; /* PID of process blocking our lock
(set by F_GETLK and F_OFD_GETLK) */

\

The |_whence |_start, and |_len fields of this structure specify the range of bytes we wish to lock.
Bytes past the end of the file may be locked, but not bytes before the start of the file.

|_start is the starting offset for the lock, and is interpreted redath d@ther: the start of the file (if
|_whences SEEK_SET); the current file offset (if whenceis SEEK_CUR); or the end of the file (if
|_whenceis SEEK_END). Inthe final two cases]_start can be a ngative rumber provided the et
does not lie before the start of the file.

|_len specifies the number of bytes to be ledk If|_lenis positive, then the range to be lockedvers
bytes|_start up to and including start+l_len-1. Specifying0 for |_len has the special meaning: lock
all bytes starting at the location specifiedl bywhenceand|_start through to the end of file, no matter
how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to suppoddiveé len vaue; if
|_len is negaive, the interval described bjock covers bytesl| start+l _len up to and including
|_start-1. Thisis supported by Linux since kernel versions 2.4.21 and 2.5.49.

Thel_typefield can be used to place a reedRDLCK) or a wite (F_ WRLCK) lock on a file. Any
number of processes may hold a read lock (shared lock) on gfde,rbut only one process may hold
a write lock (eclusive lock). Anexclusive lock excludes all other locks, both shared ardlesive. A
single process can hold only one type of lock on a file region; ifvaloek is applied to an already-
locked region, then the existing lock is gerted to the n& lock type. (Such camrsions may iuolve
splitting, shrinking, or coalescing with an existing lock if the byte range specified bywHeatedoes
not precisely coincide with the range of the existing lock.)

F_SETLK (struct flok *)
Acquire a lock (when _typeis F_RDLCK or F_WRLCK) or release a lock (whelntypeis
F_UNLCK) on the bytes specified by thewhencel_start, and|_lenfields oflock. If a con-
flicting lock is held by another process, this call returns -1 andesets to EACCES or

Linux 2016-10-08 2

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

EAGAIN . (The error returned in this case differs across implementations, so POSIX requires
a portable application to check for both errors.)

F_SETLKW (struct flodk *)
As for F_SETLK, but if a conflicting lock is held on the file, then wait for that lock to be
released. I dgnal is caught while witing, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value —Em@nd set toEINTR ; see
signal(7)).

F_GETLK (struct flod *)
On input to this calllock describes a lock we would &kto dace on the file. If the lock could
be placedfcntl() does not actually place it, but retufAisUNLCK in thel_typefield of lock
and leaes the other fields of the structure unchanged.

If one or more incompatible locks would peat this lock being placed, thdantl() returns
details about one of those locks in thiype |_whencel_start, and|_lenfields oflock. If the
conflicting lock is a traditional (process-associated) record lock, thengltkfield is set to

the PID of the process holding that lock. If the conflicting lock is an open file description
lock, thenl_pid is set to —1. Note that the returned information may already be out of date by
the time the caller inspects it.

In order to place a read lockd must be open for readindn order to place a write lockkd must be
open for writing. To place both types of lock, open a file read-write.

When placing locks witlr SETLKW, the kernel detectdeadlocks whereby tvo or more processes
have their lock requests mutually blocked by locks held by the other procdssesxample, suppose
process A holds a write lock on byte 100 of a file, and process B holds a write lock on byté 200.
each process then attempts to lock the byte alreadgdock the other process usiRgSETLKW,

then, without deadlock detection, both processeglavremain blocked indefinitelyWhen the krnel
detects such deadlocks, it causes one of the blocking lock requests to immedlilatety the error
EDEADLK ; an gplication that encounters such an error should release some of its locksmo allo
other applications to proceed before attemptirgginethe locks that it requiresCircular deadlocks
involving more than tw processes are also detected. Notaydver, that there are limitations to the
kernel's deadlock-detection algorithm; see BUGS.

As well as being remad by an eplicit F_UNLCK, record locks are automatically released when the
process terminates.

Record locks are not inherited by a child createdoria(2), but are preserved acrossexecvé?2).

Because of theuffering performed by thetdio(3) library, the use of record locking with routines in
that package should beaided; usaead(2) andwrite (2) instead.

The record locks described algoae associated with the process (ualike open file description locks
described belw). Thishas some unfortunate consequences:

* |f a process closeany file descriptor referring to a file, then all of the processtks on that file
are released, gerdless of the file descriptor(s) on which the locks were obtained. This is bad: it
means that a process can lose its locks on a file sutdtcdsasswdor /etc/mtabwhen for some
reason a library function decides to open, read, and close the same file.

* The threads in a process share locks. In other words, a multithreaded programseartord
locking to ensure that threads diosifnultaneously access the same region of a file.

Open file description locks s@\oth of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most respects identical
to the traditional record locks described aboThis lock type is Linux-specific, andsalable since
Linux 3.15. (There is a proposal with the Austin Group to include this lock type inxheenision of
POSIX.1.) Br an explanation of open file descriptions, agen(2).

The principal difference between theatock types is that whereas traditional record locks are associ-
ated with a process, open file description locks are associated with the open file description on which

Linux 2016-10-08 3

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

they are acquired, much liklocks acquired witlilock(2). Consequentlyand unlile traditional advi-

sory record locks), open file description locks are inherited adaykg2) (and clong2) with
CLONE_FILES), and are only automatically released on the last close of the open file description,
instead of being released oryaifose of the file.

Conflicting lock combinations (i.e., a read lock and a write lock orvwite locks) where one lock is
an open file description lock and the other is a traditional record lock coniiictwhen thg are
acquired by the same process on the same file descriptor.

Open file description locks placed via the same open file description (i.e., via the same file descriptor
or via a duplicate of the file descriptor createdfdik (2), dup(2), fcntl() F_DUPFD, and so on) are
always compatible: if a ne lock is placed on an already locked region, then xistieg lock is con-

verted to the m& lock type. (Such comrsions may result in splitting, shrinking, or coalescing with an
existing lock as discussed alm)

On the other hand, open file description locks may conflict with each other wiyeaneteequired via
different open file descriptions. Thus, the threads in a multithreaded program can use open file descrip-
tion locks to synchronize access to a filgioa by having each thread perform itsroopen(2) on the

file and applying locks via the resulting file descriptor.

As with traditional advisory locks, the third argumentduotl (), lock, is a pinter to arflock structure.
By contrast with traditional record locks, theid field of that structure must be set to zero when using
the commands described belo

The commands for working with open file description locks are analogous to those used with tradi-
tional locks:

F _OFD_SETLK (struct flok *)
Acquire an open file description lock (whenypeis F_ RDLCK or F_WRLCK) or release
an open file description lock (whentype is F_UNLCK) on the bytes specified by the
|_whencel_start, and|_lenfields oflock. If a conflicting lock is held by another process, this
call returns -1 and setsrnoto EAGAIN .

F OFD_SETLKW (struct flod *)
As for F_OFD_SETLK, hut if a conflicting lock is held on the file, theraivfor that lock to
be released. If a signal is caught while waiting, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value —Em@nd set toEINTR ; see
signal(7)).

F OFD_GETLK (struct flok *)
On input to this calllock describes an open file description lock we would tixdace on the
file. If the lock could be placed;ntl() does not actually place itubreturnsF_UNLCK in
thel_typefield of lock and leaes the other fields of the structure unchanged. If one or more
incompatible locks would pvent this lock being placed, then details about one of these locks
are returned vitock, as ascribed abee for F_ GETLK.

In the current implementation, no deadlock detection is performed for open file description locks.
(This contrasts with process-associated record locks, for which the kernel does perform deadlock detec-
tion.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGSvbdlecause of
these bugs, and the fact that the feature isuweli® be Ittle used, since Linux 4.5, mandatory locking
has been made an optional featureyegmed by a configuration optionCONFIG_MANDA-
TORY_FILE_LOCKING). Thisis an initial step toward removing this feature completely.

By default, both traditional (process-associated) and open file description record locks are.advisory
Advisory locks are not enforced and are useful only between cooperating processes.

Both lock types can also be mandatolandatory locks are enforced for all processes. If a process
tries to perform an incompatible access (eaad(2) orwrite (2)) on a file region that has an incompat-
ible mandatory lock, then the result depends upon wheth& tNONBLOCK flag is enabled for its
open file description. If th® NONBLOCK flag is not enabled, then the system call is blocked until

Linux 2016-10-08 4

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

the lock is remeed or converted to a mode that is compatible with the accélsthe O_ NONBLOCK
flag is enabled, then the system call fails with the &AgBAIN .

To make wse of mandatory locks, mandatory locking must be enabled both on the filesystem that con-
tains the file to be locked, and on the file itself. Mandatory locking is enabled on a filesystem using the
"—0 mand" option tanount(8), or theMS_MANDLOCK flag for mount(2). Mandatorylocking is
enabled on a file by disabling grougeeute permission on the file and enabling the set-group-ID per
mission bit (seehmod(1) andchmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support mandatory locking,
although the details of oto enable it vary across systems.

Managing signals
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG andF_SETSIG are
used to manage l/Qvalability signals:

F_GETOWN (void)
Return (as the function result) the process ID or process group currentiynmg&GIO and
SIGURG signals for gents on file descriptoid. Process IDs are returned as positialues;
process group IDs are returned agaige \values (but see BUGS belowarg is ignored.

F_SETOWN (int)
Set the process ID or process group ID that will rec&IGIO and SIGURG signals for
evants on the file descriptdd. The target process or process group ID is specifiaggin A
process ID is specified as a pogthalue; a process group ID is specified asgsatinve value.
Most commonly the calling process specifies itself as the owner (thargsis specified as

getpid(2)).

As well as setting the file descriptowier, one must also enable generation of signals on the
file descriptor This is done by using thientl() F_ SETFL command to set th® ASYNC

file status flag on the file descriptdBubsequentlya SIGIO signal is sent whewer input or
output becomes possible on the file descriptdre fcntl() F_SETSIG command can be used
to obtain delrery of a signal other tha8IGIO.

Sending a signal to thevoer process (group) specified BySETOWN is subject to the same
permissions checks as are describedkith(2), where the sending process is the one that
employsF SETOWN (but see BUGS belg). If this permission checlails, then the signal is
silently discarded.Note The F_SETOWN operation records the callertredentials at the
time of thefentl() call, and it is these sed credentials that are used for the permission
checks.

If the file descriptorfd refers to a soak, F SETOWN also selects the recipient 8fGURG
signals that are defred when out-of-band data aes on hat sockt. SIGURG is sent in
ary situation whereselec{2) would report the socket as having an "exceptional condition".)

The following was true in 2.6.x kernels up to and including kernel 2.6.11:

If a nonzero value is gén to F_SETSIG in a multithreaded process running with a
threading library that supports thread groups (e.g., NPTL), then avpasailie gven

to F_SETOWN has a different meaning: instead of being a process ID identifying a
whole process, it is a thread ID identifying a specific thread within a proCesse-
qguently it may be necessary to paSsSETOWN the result ofgettid(2) instead of
getpid(2) to get sensible results whEnSETSIG is used. (In current Linux thread-
ing implementations, a main threadhread ID is the same as its process This
means that a single-threaded program can equallgettie(2) or getpid(2) in this
scenario.) Notehowever, that the statements in this paragraph do not apply to the
SIGURG signal generated for out-of-band data on a socket: this signalagsatent

to either a process or a process group, depending on the wandogt SETOWN.

The abee kehavior was accidentally dropped in Linux 2.6.12, anoinit be restored. From
Linux 2.6.32 onward, use_ SETOWN_EX to tagetSIGIO andSIGURG signals at a partic-
ular thread.

Linux 2016-10-08 5

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

F _GETOWN_EX (struct f_owner_x*) (since Linux 2.6.32)
Return the current file descriptor owner settings as defined byw@ys®& SETOWN_EX
operation. Thenformation is returned in the structure pointed toaby, which has the fol-
lowing form:

struct f_owner _e{
int type;
pid_t pid;

h

The type field will have me of the alues F OWNER_TID, F_ OWNER_PID, or
F_ OWNER_PGRP. The pid field is a positie integer representing a thread ID, process ID,
or process group ID. Sée SETOWN_EX for more details.

F_SETOWN_EX (struct f_owner_e*) (since Linux 2.6.32)
This operation performs a similar taskRoSETOWN. It allows the caller to direct I/Ovail-
ability signals to a specific thread, process, or process githupcaller specifies the target of
signals viaarg, which is a pointer to & owner_exstructure. Theypefield has one of the fol-
lowing values, which define howid is interpreted:

F_OWNER_TID
Send the signal to the thread whose thread ID @hesweturned by a call thone(2)
or gettid(2)) is specified inpid.

F_OWNER_PID
Send the signal to the process whose ID is specifipitiin

F_OWNER_PGRP
Send the signal to the process group whose ID is speciffid.ifNote that, unlik
with F_SETOWN, a process group ID is specified as a pwesitialue here.)

F_GETSIG (void)
Return (as the function result) the signal sent when input or output becomes pdssidliee
of zero means$IGIO is sent. Any other value (includingsIGIO) is the signal sent instead,
and in this case additional info isallable to the signal handler if installed wi$A_SIG-
INFO. argis ignored.

F_SETSIG (int)
Set the signal sent when input or output becomes possible to the weduéngirg. A value
of zero means to send the alelt SIGIO signal. Ary other value (includingsIGIO) is the
signal to send instead, and in this case additional infwatable to the signal handler if
installed withSA_SIGINFO.

By usingF_SETSIG with a nonzero &lue, and settin@A_SIGINFO for the signal handler
(seesigaction(2)), extra information about I/Ovents is passed to the handler irsiginfo_t
structure. Ifthe si_codefield indicates the source &_SIGIO, the si_fd field gives the file
descriptor associated with theeat. Otherwisethere is no indication which file descriptors
are pending, and you should use the usual mechansahec{?), poll(2), read(2) with
O_NONBLOCK set etc.) to determine which file descriptors amélable for I/O.

Note that the file descriptor providedsh fd is the one that was specified during EheSET-
SIG operation. Thiscan lead to an unusual corner caffethe file descriptor is duplicated
(dup(2) or similar), and the original file descriptor is closed, then \i@ts will continue to
be generated, but tle fd field will contain the number of the waclosed file descriptor.

By selecting a real time signalaiue >=SIGRTMIN), multiple /O &ents may be queued
using the same signal numbers. (Queuing is dependentitebée memory) Extrainforma-
tion is available if SA_SIGINFO is set for the signal handjexs dove.

Note that Linux imposes a limit on the number of real-time signals that may be queued to a

process (segetrlimit (2) andsignal(7)) and if this limit is reached, then the kernelerts to
delivering SIGIO, and this signal is delered to the entire process rather than to a specific

Linux 2016-10-08 6

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

thread.

Using these mechanisms, a program can implement fully asynchronous I/O withowealsa{g) or
poll(2) most of the time.

The use 0of0_ASYNC is specific to BSD and Linux. The only useFof GETOWN andF_SETOWN
specified in POSIX.1 is in conjunction with the use of @URG signal on sockts. (POSIXdoes
not specify theSIGIO signal.) F GETOWN_EX, F_ SETOWN_EX, F_GETSIG, and F_SETSIG
are Linux-specific. POSIX has asynchronous I/O and thie_sigewent structure to achie smilar
things; these are alsoaiable in Linux as part of the GNU C Library (Glibc).

Leases
F _SETLEASE and F_GETLEASE (Linux 2.4 onward) are used (respeely) to establish a e
lease, and retne the current lease, on the open file description referred to by the file desfctiptor
file lease provides a mechanism whereby the process holding the lease (the "lease holder") is notified
(via delivery of a signal) when a process (the "lease breaker") triepan(2) or truncate(2) the file
referred to by that file descriptor.

F_SETLEASE (int)
Set or remue a fle lease according to which of the followinglwes is specified in the infer
arg:

F_RDLCK
Take aut a read lease. This will cause the calling process to be notified when the file
is opened for writing or is truncated read lease can be placed only on a file
descriptor that is opened read-only.

F_WRLCK
Take aut a write lease. This will cause the caller to be notified when the file is
opened for reading or writing or is truncatedl.write lease may be placed on a file
only if there are no other open file descriptors for the file.

F_UNLCK
Remawe aur lease from the file.

Leases are associated with an open file descriptionojge&2)). This means that duplicate file
descriptors (created bfor example,fork (2) ordup(2)) refer to the same lease, and this lease may be
modified or released using yaf these descriptorsFurthermore, the lease is released by either an
explicit F_UNLCK operation on anof these duplicate file descriptors, or when all such file descrip-
tors hae keen closed.

Leases may be taken out only on regular files.unprvileged process may talout a lease only on a
file whose UID (owner) matches the filesystem UID of the procAgzocess with th&€AP_LEASE
capability may tak aut leases on arbitrary files.

F_GETLEASE (void)
Indicates what type of lease is associated with the file descrigtdoy returning either
F RDLCK, F_ WRLCK, or F_UNLCK, indicating, respectély, a read lease , a write lease,
or no lease.arg is ignored.

When a process (the "lease bredk performs aropen(2) or truncate(2) that conflicts with a lease
established vi&e_ SETLEASE, the system call is bloekl by the kernel and the kernel notifies the lease
holder by sending it a signabIGIO by defult). Thelease holder should respond to receipt of this
signal by doing whatex cleanup is required in preparation for the file to be accessed by another
process (e.g., flushing cachedffers) and then either rem® a downgrade its leaseA lease is
removed by performing anF_SETLEASE command specifyingrg asF_UNLCK . If the lease holder
currently holds a write lease on the file, and the lease drréakpening the file for reading, then it is
sufficient for the lease holder to downgrade the lease to a read lease. This is done by performing an
F_SETLEASE command specifyingrg asF_RDLCK.

If the lease holder fails to downgrade or remdhe lease within the number of seconds specified in
Iproc/syslifs/lease-break-timghen the kernel forcibly remves or cowngrades the lease holdeléase.

Once a lease break has been initialed;ETLEASE returns the target lease type (eitReRDLCK
or F_UNLCK, depending on what would be compatible with the lease breaker) until the lease holder

Linux 2016-10-08 7

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

voluntarily downgrades or remaes the lease or theeknel forcibly does so after the lease break timer
expires.

Once the lease has beealuntarily or forcibly remeed or downgraded, and assuming the lease
breaker has not unblocked its system call, the kernel permits the lease brgakam call to proceed.

If the lease breadt’s Hockedopen(2) ortruncate(2) is interrupted by a signal handléren the system
call fails with the erroEINTR, but the other steps still occur as describedvabdf the lease break

is killed by a signal while blocked inopen(2) or truncate(2), then the other steps still occur as
described abe. If the lease breaker specifies BieNONBLOCK flag when callingopen(2), then
the call immediately fails with the err&WOULDBLOCK , but the other steps still occur as described
above.

The default signal used to notify the lease hold&IGIO, but this can be changed using theSET-
SIG command tdcentl(). If aF_SETSIG command is performed\(en one specifyingSIGIO), and
the signal handler is established usB® SIGINFO, then the handler will rece® asiginfo_t struc-
ture as its second argument, and shefd field of this agument will hold the file descriptor of the
leased file that has been accessed by another prqdéds.is useful if the caller holds leasesimgt
multiple files.)

File and directory change notification (dnotify)
F_NOTIFY (int)
(Linux 2.4 onward) Provide notification when the directory referred tédyr ary of the files
that it contains is changed.he &ents to be notified are specifiedarg, which is a bit mask
specified by ORing together zero or more of the following bits:

DN_ACCESS
A file was accessede@d(2), pread(2), readv(2), and similar)
DN_MODIFY
A file was modifiedwrite (2), pwrite (2), writev (2), truncate(2), ftruncate (2),
and similar).
DN_CREATE
A file was createdopen(2), creat(2), mknod(2), mkdir (2), link (2), sym-
link (2), renamg(2) into this directory).
DN_DELETE
A file was unlinkedynlink (2), rename(2) to another directorymdir (2)).
DN_RENAME
A file was renamed within this directomgfame(2)).
DN_ATTRIB
The attributes of a file were changetigwn(2), chmod(2), utime(2), utimen-
saf(2), and similar).

(In order to obtain these definitions, theNU_SOURCETfeature test macro must be defined
before includingany header files.)

Directory notifications are normally "one-shot", and the application must reregister i@recei
further natifications.Alternatively, if DN_MULTISHOT is included inarg, then notification
will remain in effect until explicitly remaed.

A series ofF_NOTIFY requests is cumulag, with the &ents inarg being added to the set
already monitored.To dsable notification of all\ents, malke an F_NOTIFY call specifying
argas 0.

Notification occurs via delery of a signal. The default signal 8IGIO, but this can be
changed using the_ SETSIG command tdcntl(). (NotethatSIGIO is one of the nonqueu-

ing standard signals; switching to the use of a real-time signal means that multiple naotifica-
tions can be queued to the proceds.}he latter case, the signal handler reeersiginfo_t
structure as its second argument (if the handler was establishe®G#siB§GINFO) and the
si_fdfield of this structure contains the file descriptor which generated the notification (useful
when establishing notification on multiple directories).

Linux 2016-10-08 8

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

Especially when usin@N_MULTISHOT , a real time signal should be used for notification,
so that multiple notifications can be queued.

NOTE: New applications should use thieotify interface (®ailable since kernel 2.6.13),
which provides a much superior interface for obtaining notifications of filesystemse See
inotify (7).

Changing the capacity of a pipe

F_SETPIPE_SZ(int; since Linux 2.6.35)

Change the capacity of the pipe referred toftiyto be at leasarg bytes. Anunprivileged
process can adjust the pipe capacity tp \@aiue between the system page size and the limit
defined in/proc/sys/fs/pipe-max-sieeeproc(5)). Attemptsto set the pipe capacity balo
the page size are silently rounded up to the page size. Attempts by anleggaiprocess to
set the pipe capacity am the limit in /proc/sys/fs/pipe-max-sizgeld the erroEPERM; a
privileged procesSJAP_SYS RESOURCEH can oserride the limit.

When allocating theudfer for the pipe, the kernel may use a capacity largeral@nf that is
convenient for the implementation(ln the current implementation, the allocation is thet ne
higher paover-of-two page-size multiple of the requested siz€he actual capacity (in bytes)
that is set is returned as the function result.

Attempting to set the pipe capacity smaller than the amountff#rtspace currently used to
store data produces the erEBUSY.

F_GETPIPE_SZ(void; since Linux 2.6.35)
Return (as the function result) the capacity of the pipe referredfth by

File Sealing
File seals limit the set of allowed operations onvagfile. For each seal that is set on a file, a specific
set of operations will fail wittEPERM on this file from nw on. Thefile is said to be sealedlhe
default set of seals depends on the type of the underlying file and filesyBteran oserview of file
sealing, a discussion of its purpose, and some code examplexreéd create?).

Currently only the tmpfs(5) filesystem supports sealin@n other filesystems, altntl() operations
that operate on seals will retuehiNVAL .

Seals are a property of an inodehus, all open file descriptors referring to the same inode share the
same set of seals. Furthermore, seals ceer be emoved, only added.

F_ADD_SEALS (int; since Linux 3.17)
Add the seals gén in the bit-mask ajumentarg to the set of seals of the inode referred to by
the file descriptofd. Seals cannot be remied again. Oncethis call succeeds, the seals are
enforced by the kernel immediatelif the current set of seals includesSEAL _SEAL (see
belaw), then this call will be rejected withPERM. Adding a seal that is already set is a no-
op, in casd= SEAL_SEAL is not set alreadyln order to place a seal, the file descripfdr
must be writable.

F _GET_SEALS (void; since Linux 3.17)
Return (as the function result) the current set of seals of the inode referrefdi tdtayo seals
are set, 0 is returnedf the file does not support sealing, —1 is returned exmmdo is set to
EINVAL .

The following seals arevailable:

F_SEAL_SEAL
If this seal is set, anfurther call tofcntl() with F_ADD_SEALS will fail with EPERM.
Therefore, this seal prents aly modifications to the set of seals itself. If the initial set of
seals of a file includds_SEAL_SEAL, then this dectively causes the set of seals to be con-
stant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. Tddtsapen(2) with the
O_TRUNC flag as well asruncate(2) andftruncate(2). Thosecalls will fail with EPERM

Linux 2016-10-08 9

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

if you try to shrink the file in question. Increasing the file size is still possible.

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be incred$ésl afects write (2)
beyond the end of the fildruncate(2), ftruncate(2), andfallocate(2). Thesecalls will fail
with EPERM if you use them to increase the file size. If you keep the size or shrink it, those
calls still work as expected.

F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the Riete that shrinking or gming
the size of the file is still possible and alkd. Thusthis seal is normally used in combina-
tion with one of the other seals. This se&etswrite (2) andfallocate(2) (only in combina-
tion with theFALLOC_FL_PUNCH_HOLE flag). Thosecalls will fail with EPERM if this
seal is set. Furthermore, trying to create weshared, writable memory-mappings via
mmap(2) will also fail withEPERM.

Using theF_ ADD_SEALS operation to set the_ SEAL WRITE seal will fail withEBUSY

if any writable, shared mappingists. Suchmappings must be unmapped before you can add
this seal. Furthermore, if there areyasynchronous 1/0O operation& (submit(2)) pending

on the file, all outstanding writes will be discarded.

RETURN VALUE
For a successful call, the return value depends on the operation:

F _DUPFD The nev file descriptor.
F GETFD Value of file descriptor flags.
F GETFL Value of file status flags.

F_GETLEASE
Type of lease held on file descriptor.

F_GETOWN Value of file descriptor owner.

F GETSIG Value of signal sent when read or write becomes possible, or zero for traditional
SIGIO behavior.

F_GETPIPE_SZ F_SETPIPE_SZ
The pipe capacity.

F_GET_SEALS
A bit mask identifying the seals thatugaleen set for the inode referred tofdy

All other commands
Zero.

On error -1 is returned, anerrnois set appropriately.

ERRORS
EACCES or EAGAIN
Operation is prohibited by locks held by other processes.

EAGAIN
The operation is prohibited because the file has been memory-mapped by another process.

EBADF
fd is not an open file descriptor

EBADF
cmdis F_SETLK or F_SETLKW and the file descriptor open mode doesmatch with the
type of lock requested.

EBUSY
cmdis F_SETPIPE_SZand the ne pipe capacity specified iarg is smaller than the amount
of buffer space currently used to store data in the pipe.

EBUSY
cmdis F_ADD_SEALS, arg includesF_SEAL_WRITE, and there gists a writable, shared
mapping on the file referred to K.

Linux 2016-10-08 10

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

EDEADLK
It was detected that the specifledSETLKW command would cause a deadlock.

EFAULT
lock is outside your accessible address space.

EINTR
cmdis F_SETLKW or F_OFD_SETLKW and the operation was interrupted by a signal; see
signal(7).

EINTR
cmdis F_ GETLK, F_SETLK, F OFD_GETLK, or F_ OFD_SETLK, and the operation
was interrupted by a signal before the lock was checked or acquired. Most likely when lock-
ing a remote file (e.g., lockingrer NFS), but can sometimes happen locally.

EINVAL
The value specified iomdis not recognized by this kernel.

EINVAL
cmdis F_ADD_SEALSandarg includes an unrecognized sealing bit.

EINVAL
cmdis F_ADD_SEALSor F_GET_SEALS and the filesystem containing the inode referred
to by fd does not support sealing.

EINVAL
cmdis F_DUPFDandarg is negaive a is greater than the maximum alable value (see the
discussion oRLIMIT_NOFILE in getrlimit (2)).

EINVAL
cmdis F_SETSIG andarg is not an allavable signal number.

EINVAL
cmdisF_OFD_SETLK, F_OFD_SETLKW, or F_OFD_GETLK, and|_pid was rnot speci-
fied as zero.

EMFILE
cmdis F_DUPFD and the per-process limit on the number of open file descriptors has been
reached.

ENOLCK
Too mary segment locks open, lock table is full, or a remote locking protoaibéd (e.g.,
locking over NFS).

ENOTDIR
F_NOTIFY was gecified incmd, but fd does not refer to a directory.

EPERM
cmdis F_SETPIPE_SZand the soft or hard user pipe limit has been reachegjs=&).

EPERM
Attempted to clear th® APPENDflag on a file that has the append-only attribute set.

EPERM
cmdwas F_ADD_SEALS, but fd was not open for writing or the current set of seals on the
file already includef SEAL SEAL.

CONFORMING TO
SVr4, 4.3BSD, POSIX.1-20010nly the operation§ DUPFD, F_GETFD, F_SETFD, F_GETFL,
F_SETFL, F_GETLK,F_SETLK, andF_SETLKW are specified in POSIX.1-2001.

F _GETOWN andF_SETOWN are specified in POSIX.1-2001To get their definitions, define either
_XOPEN_SOURCEwith the value 500 or greateor POSIX_C_SOURCEwith the value 200809L
or greater.)

F DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition, define

_POSIX_C_SOURCEwith the walue 200809L or greatesr XOPEN_SOURCEwith the value 700
or greater.)

Linux 2016-10-08 11

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26

man.m.sourcentral.org

FCNTL(2) Linux Programmes Manual FCNTL(2)

F_GETOWN_EX, F_SETOWN_EX, F_SETPIPE_SZ F_GETPIPE_SZ F_GETSIG, F_SETSIG,
F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-specific. (Define theGNU_SOURCE
macro to obtain these definitions.)

F OFD_SETLK, F_ OFD_SETLKW, andF_OFD_GETLK are Linux-specific (and one must define
_GNU_SOURCEto obtain their definitions),ut work is being done to kia them included in the mé
version of POSIX.1.

F_ADD_SEALSandF_GET_SEALSare Linux-specific.

NOTES

The errors returned up2(2) are different from those returned ByDUPFD.

File locking

The original Linuxfcntl() system call was not designed to handlgddile offsets (in theflock struc-
ture). Consequenthan fcntl64() system call was added in Linux 2.&he newer system call empko

a dfferent structure for file lockingflock64 and corresponding commands$; GETLKG64,

F SETLK64, and F_SETLKW®64. Howeve, these details can be ignored by applications using glibc,
whosefentl () wrapper function transparently employs the more recent system call wheneiliaisle.

Record locks

Since kernel 2.0, there is no interaction between the types of lock plafledk{§g2) andfcntl ().

Several systems ha nore fields instruct flok such as, forxample,l_sysid Clearly, | pid alone is
not going to be very useful if the process holding the lock mayati a dfferent machine.

The original Linuxfcntl() system call \w&s not designed to handle large file offsets (inftbek struc-
ture). Consequenthan fcntl64() system call s added in Linux 2.4. The newer system call egglo

a dfferent structure for file lockingflock64 and corresponding commands$; GETLKG64,

F SETLK64, and F_SETLKW®64. Howeve, these details can be ignored by applications using glibc,
whosefentl () wrapper function transparently employs the more recent system call whenesiliaisle.

Record locking and NFS

BUGS

Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of time (defined as
more than 90 seconds with no communication), it might lose agg@hra lock without ger being

awae of the &ct. (Theperiod of time after which contact is assumed lost is known as the NFSv4 lease-
time. Ona Linux NFS serer, this can be determined by looking/ptoc/fs/nfsd/nfsv4leasetimehich
expresses the period in seconds. The default value for this file isTB@s)scenario potentially risks

data corruption, since another process might acquire a lock in the intervening period and perform file
I/0.

Since Linux 3.12, if an NFSv4 client loses contact with theeseamy 1/O to the file by a process
which "thinks" it holds a lock will fail until that process closes and reopens theéfikernel parame-
ter, nfs.recover_lost_lockscan be set to 1 to obtain the pre-3.12 béra whereby the client will
attempt to receer lost locks when contact is reestablished with theeseecause of the attendant
risk of data corruption, this parameter defaults to 0 (disabled).

F_SETFL

It is not possible to ude SETFL to change the state of tlle DSYNCandO_SYNCflags. Attempts
to change the state of these flags are silently ignored.

F_GETOWN

Linux

A limitation of the Linux system call ceentions on some architectures (notably i386) means that if a
(negative) process group ID to be returned BYyGETOWN falls in the range -1 to —4095, then the
return \alue is wrongly interpreted by glibc as an error in the system call; that is, the return value of
fentl() will be -1, anderrno will contain the (positie) process group ID.The Linux-specific
F_GETOWN_EX operation goids this problem.Since glibc version 2.11, glibc makes therdel
F_GETOWN problem invisible by implementing_ GETOWN usingF_ GETOWN_EX.

2016-10-08 12

https://man.m.sourcentral.org/f26/2+fcntl

fedora 26 man.m.sourcentral.org
FCNTL(2) Linux Programmes Manual FCNTL(2)
F_SETOWN

In Linux 2.4 and earliethere is bug that can occur when an wilaged process usés SETOWN to
specify the owner of a soekfile descriptor as a process (group) other than the.catlighis case,
fcntl() can return -1 witkerrno set toEPERM, even when the owner process (group) is one that the
caller has permission to send signals Bespite this error return, the file descriptor owner is set, and
signals will be sent to the owner.

Deadlock detection

The deadlock-detection algorithm employed by the kernel when dealing-w8ETLKW requests
can yield both false wgtives (failures to detect deadlocks, léag a set of deadlocked processes
blocked indefinitely) and false posits EDEADLK errors when there is no deadlockor example,

the kernel limits the lock depth of its dependesearch to 10 steps, meaning that circular deadlock
chains that exceed that size will not be detectedddition, the kernel may falsely indicate a deadlock
when two or more processes created using ¢lane(2) CLONE_FILES flag place locks that appear
(to the kernel) to conflict.

Mandatory locking

The Linux implementation of mandatory locking is subject to race conditions which render it unreli-
able: awrite (2) call that eerlaps with a lock may modify data after the mandatory lock is acquired; a
read(2) call that eerlaps with a lock may detect changes to data that were made only after a write lock
was aquired. Similaraces exist between mandatory locks emdap(2). Itis therefore inadvisable

to rely on mandatory locking.

SEE ALSO

dup2(2), flock(2), open(2), socke(2), lockf(3), capabilities(7), feature_test _macro$7), Islockq8)

locks.txt mandatory-locking.txt and dnotify.txt in the Linux kernel source directofpocumenta-
tion/filesystems(on older lernels, these files are directly under thecumentation/directory and
mandatory-locking.txts calledmandatory.txt

COLOPHON

Linux

This page is part of release 4.09 of the Limen-payes project. Adescription of the project, informa-
tion about reporting bugs, and the Ilatesersion of this page, can be found at
https://lwww.kernel.org/doc/man—pages/.

2016-10-08 13

https://man.m.sourcentral.org/f26/2+fcntl

