
FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

NAME
fcntl − manipulate file descriptor

SYNOPSIS
#include <unistd.h>
#include <fcntl.h>

int fcntl(int fd, int cmd, ... /* arg */ );

DESCRIPTION
fcntl () performs one of the operations described below on the open file descriptorfd. The operation is
determined bycmd.

fcntl () can take an optional third argument. Whetheror not this argument is required is determined by
cmd. The required argument type is indicated in parentheses after eachcmd name (in most cases, the
required type isint, and we identify the argument using the namearg), or void is specified if the argu-
ment is not required.

Certain of the operations below are supported only since a particular Linux kernel version. Thepre-
ferred method of checking whether the host kernel supports a particular operation is to invoke fcntl ()
with the desiredcmdvalue and then test whether the call failed withEINVAL , indicating that the ker-
nel does not recognize this value.

Duplicating a file descriptor
F_DUPFD (int)

Duplicate the file descriptorfd using the lowest-numbered available file descriptor greater than
or equal toarg. This is different fromdup2(2), which uses exactly the file descriptor speci-
fied.

On success, the new file descriptor is returned.

Seedup(2) for further details.

F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate file descriptor.
Specifying this flag permits a program to avoid an additionalfcntl () F_SETFD operation to
set theFD_CLOEXEC flag. For an explanation of why this flag is useful, see the description
of O_CLOEXEC in open(2).

File descriptor flags
The following commands manipulate the flags associated with a file descriptor. Currently, only one
such flag is defined:FD_CLOEXEC , the close-on-exec flag. If theFD_CLOEXEC bit is set, the file
descriptor will automatically be closed during a successfulexecve(2). (If the execve(2) fails, the file
descriptor is left open.)If the FD_CLOEXEC bit is not set, the file descriptor will remain open across
anexecve(2).

F_GETFD (void)
Return (as the function result) the file descriptor flags;arg is ignored.

F_SETFD (int)
Set the file descriptor flags to the value specified byarg.

In multithreaded programs, usingfcntl () F_SETFD to set the close-on-exec flag at the same time as
another thread performs afork (2) plusexecve(2) is vulnerable to a race condition that may uninten-
tionally leak the file descriptor to the program executed in the child process.See the discussion of the
O_CLOEXEC flag inopen(2) for details and a remedy to the problem.

File status flags
Each open file description has certain associated status flags, initialized byopen(2) and possibly modi-
fied by fcntl (). Duplicatedfile descriptors (made withdup(2), fcntl (F_DUPFD),fork (2), etc.) refer to
the same open file description, and thus share the same file status flags.

The file status flags and their semantics are described inopen(2).

Linux 2016-10-08 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

F_GETFL (void)
Return (as the function result) the file access mode and the file status flags;arg is ignored.

F_SETFL (int)
Set the file status flags to the value specified byarg. File access mode (O_RDONLY ,
O_WRONLY , O_RDWR) and file creation flags (i.e.,O_CREAT, O_EXCL , O_NOCTTY ,
O_TRUNC) in arg are ignored. On Linux, this command can change only theO_APPEND,
O_ASYNC, O_DIRECT , O_NOATIME , and O_NONBLOCK flags. It is not possible to
change theO_DSYNCandO_SYNCflags; see BUGS, below.

Advisory record locking
Linux implements traditional ("process-associated") UNIX record locks, as standardized by POSIX.
For a Linux-specific alternative with better semantics, see the discussion of open file description locks
below.

F_SETLK , F_SETLKW , and F_GETLK are used to acquire, release, and test for the existence of
record locks (also known as byte-range, file-segment, or file-region locks). The third argument,lock, is
a pointer to a structure that has at least the following fields (in unspecified order).

struct flock {
...
short l_type; /* Type of lock: F_RDLCK,

F_WRLCK, F_UNLCK */
short l_whence; /* How to interpret l_start:

SEEK_SET, SEEK_CUR, SEEK_END */
off_t l_start; /* Starting offset for lock */
off_t l_len; /* Number of bytes to lock */
pid_t l_pid; /* PID of process blocking our lock

(set by F_GETLK and F_OFD_GETLK) */
...

};

The l_whence, l_start, and l_len fields of this structure specify the range of bytes we wish to lock.
Bytes past the end of the file may be locked, but not bytes before the start of the file.

l_start is the starting offset for the lock, and is interpreted relative to either: the start of the file (if
l_whenceis SEEK_SET); the current file offset (ifl_whenceis SEEK_CUR); or the end of the file (if
l_whenceis SEEK_END). In the final two cases,l_start can be a negative number provided the offset
does not lie before the start of the file.

l_len specifies the number of bytes to be locked. If l_len is positive, then the range to be locked covers
bytesl_start up to and includingl_start+l_len−1. Specifying0 for l_len has the special meaning: lock
all bytes starting at the location specified byl_whenceand l_start through to the end of file, no matter
how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to support a negative l_len value; if
l_len is negative, the interval described bylock covers bytes l_start+l_len up to and including
l_start−1. Thisis supported by Linux since kernel versions 2.4.21 and 2.5.49.

The l_typefield can be used to place a read (F_RDLCK ) or a write (F_WRLCK ) lock on a file.Any
number of processes may hold a read lock (shared lock) on a file region, but only one process may hold
a write lock (exclusive lock). Anexclusive lock excludes all other locks, both shared and exclusive. A
single process can hold only one type of lock on a file region; if a new lock is applied to an already-
locked region, then the existing lock is converted to the new lock type. (Such conversions may involve
splitting, shrinking, or coalescing with an existing lock if the byte range specified by the new lock does
not precisely coincide with the range of the existing lock.)

F_SETLK (struct flock *)
Acquire a lock (whenl_type is F_RDLCK or F_WRLCK ) or release a lock (whenl_type is
F_UNLCK ) on the bytes specified by thel_whence, l_start, and l_len fields of lock. If a con-
flicting lock is held by another process, this call returns −1 and setserrno to EACCES or

Linux 2016-10-08 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

EAGAIN . (The error returned in this case differs across implementations, so POSIX requires
a portable application to check for both errors.)

F_SETLKW (struct flock *)
As for F_SETLK , but if a conflicting lock is held on the file, then wait for that lock to be
released. Ifa signal is caught while waiting, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value −1 anderrno set toEINTR ; see
signal(7)).

F_GETLK (struct flock *)
On input to this call,lock describes a lock we would like to place on the file. If the lock could
be placed,fcntl () does not actually place it, but returnsF_UNLCK in the l_typefield of lock
and leaves the other fields of the structure unchanged.

If one or more incompatible locks would prevent this lock being placed, thenfcntl () returns
details about one of those locks in thel_type, l_whence, l_start, and l_len fields oflock. If the
conflicting lock is a traditional (process-associated) record lock, then thel_pid field is set to
the PID of the process holding that lock. If the conflicting lock is an open file description
lock, thenl_pid is set to −1. Note that the returned information may already be out of date by
the time the caller inspects it.

In order to place a read lock,fd must be open for reading.In order to place a write lock,fd must be
open for writing.To place both types of lock, open a file read-write.

When placing locks withF_SETLKW , the kernel detectsdeadlocks, whereby two or more processes
have their lock requests mutually blocked by locks held by the other processes.For example, suppose
process A holds a write lock on byte 100 of a file, and process B holds a write lock on byte 200.If
each process then attempts to lock the byte already locked by the other process usingF_SETLKW ,
then, without deadlock detection, both processes would remain blocked indefinitely. When the kernel
detects such deadlocks, it causes one of the blocking lock requests to immediately fail with the error
EDEADLK ; an application that encounters such an error should release some of its locks to allow
other applications to proceed before attempting regain the locks that it requires.Circular deadlocks
involving more than two processes are also detected. Note, however, that there are limitations to the
kernel’s deadlock-detection algorithm; see BUGS.

As well as being removed by an explicit F_UNLCK , record locks are automatically released when the
process terminates.

Record locks are not inherited by a child created viafork (2), but are preserved across anexecve(2).

Because of the buffering performed by thestdio(3) library, the use of record locking with routines in
that package should be avoided; useread(2) andwrite (2) instead.

The record locks described above are associated with the process (unlike the open file description locks
described below). Thishas some unfortunate consequences:

* If a process closesany file descriptor referring to a file, then all of the process’s locks on that file
are released, regardless of the file descriptor(s) on which the locks were obtained. This is bad: it
means that a process can lose its locks on a file such as/etc/passwdor /etc/mtabwhen for some
reason a library function decides to open, read, and close the same file.

* The threads in a process share locks. In other words, a multithreaded program can’t use record
locking to ensure that threads don’t simultaneously access the same region of a file.

Open file description locks solve both of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most respects identical
to the traditional record locks described above. This lock type is Linux-specific, and available since
Linux 3.15. (There is a proposal with the Austin Group to include this lock type in the next revision of
POSIX.1.) For an explanation of open file descriptions, seeopen(2).

The principal difference between the two lock types is that whereas traditional record locks are associ-
ated with a process, open file description locks are associated with the open file description on which

Linux 2016-10-08 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

they are acquired, much like locks acquired withflock(2). Consequently(and unlike traditional advi-
sory record locks), open file description locks are inherited acrossfork (2) (and clone(2) with
CLONE_FILES ), and are only automatically released on the last close of the open file description,
instead of being released on any close of the file.

Conflicting lock combinations (i.e., a read lock and a write lock or two write locks) where one lock is
an open file description lock and the other is a traditional record lock conflict even when they are
acquired by the same process on the same file descriptor.

Open file description locks placed via the same open file description (i.e., via the same file descriptor,
or via a duplicate of the file descriptor created byfork (2), dup(2), fcntl () F_DUPFD, and so on) are
always compatible: if a new lock is placed on an already locked region, then the existing lock is con-
verted to the new lock type. (Such conversions may result in splitting, shrinking, or coalescing with an
existing lock as discussed above.)

On the other hand, open file description locks may conflict with each other when they are acquired via
different open file descriptions. Thus, the threads in a multithreaded program can use open file descrip-
tion locks to synchronize access to a file region by having each thread perform its own open(2) on the
file and applying locks via the resulting file descriptor.

As with traditional advisory locks, the third argument tofcntl (), lock, is a pointer to anflockstructure.
By contrast with traditional record locks, thel_pid field of that structure must be set to zero when using
the commands described below.

The commands for working with open file description locks are analogous to those used with tradi-
tional locks:

F_OFD_SETLK (struct flock *)
Acquire an open file description lock (whenl_type is F_RDLCK or F_WRLCK ) or release
an open file description lock (whenl_type is F_UNLCK ) on the bytes specified by the
l_whence, l_start, and l_len fields oflock. If a conflicting lock is held by another process, this
call returns −1 and setserrno to EAGAIN .

F_OFD_SETLKW (struct flock *)
As for F_OFD_SETLK, but if a conflicting lock is held on the file, then wait for that lock to
be released. If a signal is caught while waiting, then the call is interrupted and (after the signal
handler has returned) returns immediately (with return value −1 anderrno set toEINTR ; see
signal(7)).

F_OFD_GETLK (struct flock *)
On input to this call,lock describes an open file description lock we would like to place on the
file. If the lock could be placed,fcntl () does not actually place it, but returnsF_UNLCK in
the l_typefield of lock and leaves the other fields of the structure unchanged. If one or more
incompatible locks would prevent this lock being placed, then details about one of these locks
are returned vialock, as described above for F_GETLK .

In the current implementation, no deadlock detection is performed for open file description locks.
(This contrasts with process-associated record locks, for which the kernel does perform deadlock detec-
tion.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGS below. Because of
these bugs, and the fact that the feature is believed to be little used, since Linux 4.5, mandatory locking
has been made an optional feature, governed by a configuration option (CONFIG_MANDA-
TORY_FILE_LOCKING ). Thisis an initial step toward removing this feature completely.

By default, both traditional (process-associated) and open file description record locks are advisory.
Advisory locks are not enforced and are useful only between cooperating processes.

Both lock types can also be mandatory. Mandatory locks are enforced for all processes. If a process
tries to perform an incompatible access (e.g.,read(2) orwrite (2)) on a file region that has an incompat-
ible mandatory lock, then the result depends upon whether theO_NONBLOCK flag is enabled for its
open file description. If theO_NONBLOCK flag is not enabled, then the system call is blocked until

Linux 2016-10-08 4

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

the lock is removed or converted to a mode that is compatible with the access.If the O_NONBLOCK
flag is enabled, then the system call fails with the errorEAGAIN .

To make use of mandatory locks, mandatory locking must be enabled both on the filesystem that con-
tains the file to be locked, and on the file itself. Mandatory locking is enabled on a filesystem using the
"−o mand" option tomount(8), or theMS_MANDLOCK flag for mount(2). Mandatorylocking is
enabled on a file by disabling group execute permission on the file and enabling the set-group-ID per-
mission bit (seechmod(1) andchmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support mandatory locking,
although the details of how to enable it vary across systems.

Managing signals
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG andF_SETSIG are
used to manage I/O availability signals:

F_GETOWN (void)
Return (as the function result) the process ID or process group currently receiving SIGIO and
SIGURG signals for events on file descriptorfd. Process IDs are returned as positive values;
process group IDs are returned as negative values (but see BUGS below).arg is ignored.

F_SETOWN (int)
Set the process ID or process group ID that will receive SIGIO and SIGURG signals for
ev ents on the file descriptorfd. The target process or process group ID is specified inarg. A
process ID is specified as a positive value; a process group ID is specified as a negative value.
Most commonly, the calling process specifies itself as the owner (that is,arg is specified as
getpid(2)).

As well as setting the file descriptor owner, one must also enable generation of signals on the
file descriptor. This is done by using thefcntl () F_SETFL command to set theO_ASYNC
file status flag on the file descriptor. Subsequently, a SIGIO signal is sent whenever input or
output becomes possible on the file descriptor. The fcntl () F_SETSIG command can be used
to obtain delivery of a signal other thanSIGIO .

Sending a signal to the owner process (group) specified byF_SETOWN is subject to the same
permissions checks as are described forkill (2), where the sending process is the one that
employsF_SETOWN (but see BUGS below). If this permission check fails, then the signal is
silently discarded.Note: The F_SETOWN operation records the caller’s credentials at the
time of the fcntl () call, and it is these saved credentials that are used for the permission
checks.

If the file descriptorfd refers to a socket, F_SETOWN also selects the recipient ofSIGURG
signals that are delivered when out-of-band data arrives on that socket. (SIGURG is sent in
any situation whereselect(2) would report the socket as having an "exceptional condition".)

The following was true in 2.6.x kernels up to and including kernel 2.6.11:

If a nonzero value is given to F_SETSIG in a multithreaded process running with a
threading library that supports thread groups (e.g., NPTL), then a positive value given
to F_SETOWN has a different meaning: instead of being a process ID identifying a
whole process, it is a thread ID identifying a specific thread within a process.Conse-
quently, it may be necessary to passF_SETOWN the result ofgettid(2) instead of
getpid(2) to get sensible results whenF_SETSIG is used. (In current Linux thread-
ing implementations, a main thread’s thread ID is the same as its process ID.This
means that a single-threaded program can equally usegettid(2) or getpid(2) in this
scenario.) Note,however, that the statements in this paragraph do not apply to the
SIGURG signal generated for out-of-band data on a socket: this signal is always sent
to either a process or a process group, depending on the value given to F_SETOWN.

The above behavior was accidentally dropped in Linux 2.6.12, and won’t be restored. From
Linux 2.6.32 onward, useF_SETOWN_EX to targetSIGIO andSIGURG signals at a partic-
ular thread.

Linux 2016-10-08 5

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
Return the current file descriptor owner settings as defined by a previous F_SETOWN_EX
operation. Theinformation is returned in the structure pointed to byarg, which has the fol-
lowing form:

struct f_owner_ex {
int type;
pid_t pid;

};

The type field will have one of the values F_OWNER_TID , F_OWNER_PID, or
F_OWNER_PGRP. The pid field is a positive integer representing a thread ID, process ID,
or process group ID. SeeF_SETOWN_EX for more details.

F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
This operation performs a similar task toF_SETOWN. It allows the caller to direct I/O avail-
ability signals to a specific thread, process, or process group.The caller specifies the target of
signals viaarg, which is a pointer to af_owner_exstructure. Thetypefield has one of the fol-
lowing values, which define howpid is interpreted:

F_OWNER_TID
Send the signal to the thread whose thread ID (the value returned by a call toclone(2)
or gettid(2)) is specified inpid.

F_OWNER_PID
Send the signal to the process whose ID is specified inpid.

F_OWNER_PGRP
Send the signal to the process group whose ID is specified inpid. (Note that, unlike
with F_SETOWN, a process group ID is specified as a positive value here.)

F_GETSIG (void)
Return (as the function result) the signal sent when input or output becomes possible.A value
of zero meansSIGIO is sent. Any other value (includingSIGIO ) is the signal sent instead,
and in this case additional info is available to the signal handler if installed withSA_SIG-
INFO . arg is ignored.

F_SETSIG (int)
Set the signal sent when input or output becomes possible to the value given in arg. A value
of zero means to send the default SIGIO signal. Any other value (includingSIGIO ) is the
signal to send instead, and in this case additional info is available to the signal handler if
installed withSA_SIGINFO.

By usingF_SETSIG with a nonzero value, and settingSA_SIGINFO for the signal handler
(seesigaction(2)), extra information about I/O events is passed to the handler in asiginfo_t
structure. Ifthe si_codefield indicates the source isSI_SIGIO, the si_fd field gives the file
descriptor associated with the event. Otherwise,there is no indication which file descriptors
are pending, and you should use the usual mechanisms (select(2), poll(2), read(2) with
O_NONBLOCK set etc.) to determine which file descriptors are available for I/O.

Note that the file descriptor provided insi_fd is the one that was specified during theF_SET-
SIG operation. Thiscan lead to an unusual corner case.If the file descriptor is duplicated
(dup(2) or similar), and the original file descriptor is closed, then I/O events will continue to
be generated, but thesi_fd field will contain the number of the now closed file descriptor.

By selecting a real time signal (value >=SIGRTMIN ), multiple I/O events may be queued
using the same signal numbers. (Queuing is dependent on available memory.) Extrainforma-
tion is available if SA_SIGINFO is set for the signal handler, as above.

Note that Linux imposes a limit on the number of real-time signals that may be queued to a
process (seegetrlimit (2) andsignal(7)) and if this limit is reached, then the kernel reverts to
delivering SIGIO , and this signal is delivered to the entire process rather than to a specific

Linux 2016-10-08 6

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

thread.

Using these mechanisms, a program can implement fully asynchronous I/O without usingselect(2) or
poll(2) most of the time.

The use ofO_ASYNC is specific to BSD and Linux. The only use ofF_GETOWN andF_SETOWN
specified in POSIX.1 is in conjunction with the use of theSIGURG signal on sockets. (POSIXdoes
not specify theSIGIO signal.) F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG
are Linux-specific.POSIX has asynchronous I/O and theaio_sigevent structure to achieve similar
things; these are also available in Linux as part of the GNU C Library (Glibc).

Leases
F_SETLEASE and F_GETLEASE (Linux 2.4 onward) are used (respectively) to establish a new
lease, and retrieve the current lease, on the open file description referred to by the file descriptorfd. A
file lease provides a mechanism whereby the process holding the lease (the "lease holder") is notified
(via delivery of a signal) when a process (the "lease breaker") tries toopen(2) or truncate(2) the file
referred to by that file descriptor.

F_SETLEASE (int)
Set or remove a file lease according to which of the following values is specified in the integer
arg:

F_RDLCK
Take out a read lease. This will cause the calling process to be notified when the file
is opened for writing or is truncated.A read lease can be placed only on a file
descriptor that is opened read-only.

F_WRLCK
Take out a write lease. This will cause the caller to be notified when the file is
opened for reading or writing or is truncated.A write lease may be placed on a file
only if there are no other open file descriptors for the file.

F_UNLCK
Remove our lease from the file.

Leases are associated with an open file description (seeopen(2)). This means that duplicate file
descriptors (created by, for example,fork (2) or dup(2)) refer to the same lease, and this lease may be
modified or released using any of these descriptors.Furthermore, the lease is released by either an
explicit F_UNLCK operation on any of these duplicate file descriptors, or when all such file descrip-
tors have been closed.

Leases may be taken out only on regular files.An unprivileged process may take out a lease only on a
file whose UID (owner) matches the filesystem UID of the process.A process with theCAP_LEASE
capability may take out leases on arbitrary files.

F_GETLEASE (void)
Indicates what type of lease is associated with the file descriptorfd by returning either
F_RDLCK , F_WRLCK , or F_UNLCK , indicating, respectively, a read lease , a write lease,
or no lease.arg is ignored.

When a process (the "lease breaker") performs anopen(2) or truncate(2) that conflicts with a lease
established viaF_SETLEASE, the system call is blocked by the kernel and the kernel notifies the lease
holder by sending it a signal (SIGIO by default). Thelease holder should respond to receipt of this
signal by doing whatever cleanup is required in preparation for the file to be accessed by another
process (e.g., flushing cached buffers) and then either remove or downgrade its lease.A lease is
removed by performing anF_SETLEASE command specifyingarg asF_UNLCK . If the lease holder
currently holds a write lease on the file, and the lease breaker is opening the file for reading, then it is
sufficient for the lease holder to downgrade the lease to a read lease. This is done by performing an
F_SETLEASE command specifyingarg asF_RDLCK .

If the lease holder fails to downgrade or remove the lease within the number of seconds specified in
/proc/sys/fs/lease-break-time, then the kernel forcibly removes or downgrades the lease holder’s lease.

Once a lease break has been initiated,F_GETLEASE returns the target lease type (eitherF_RDLCK
or F_UNLCK , depending on what would be compatible with the lease breaker) until the lease holder

Linux 2016-10-08 7

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

voluntarily downgrades or removes the lease or the kernel forcibly does so after the lease break timer
expires.

Once the lease has been voluntarily or forcibly removed or downgraded, and assuming the lease
breaker has not unblocked its system call, the kernel permits the lease breaker’s system call to proceed.

If the lease breaker’s blockedopen(2) or truncate(2) is interrupted by a signal handler, then the system
call fails with the errorEINTR , but the other steps still occur as described above. If the lease breaker
is killed by a signal while blocked inopen(2) or truncate(2), then the other steps still occur as
described above. If the lease breaker specifies theO_NONBLOCK flag when callingopen(2), then
the call immediately fails with the errorEWOULDBLOCK , but the other steps still occur as described
above.

The default signal used to notify the lease holder isSIGIO , but this can be changed using theF_SET-
SIG command tofcntl (). If a F_SETSIG command is performed (even one specifyingSIGIO ), and
the signal handler is established usingSA_SIGINFO, then the handler will receive asiginfo_t struc-
ture as its second argument, and thesi_fd field of this argument will hold the file descriptor of the
leased file that has been accessed by another process.(This is useful if the caller holds leases against
multiple files.)

File and directory change notification (dnotify)
F_NOTIFY (int)

(Linux 2.4 onward) Provide notification when the directory referred to byfd or any of the files
that it contains is changed.The events to be notified are specified inarg, which is a bit mask
specified by ORing together zero or more of the following bits:

DN_ACCESS
A file was accessed (read(2), pread(2), readv(2), and similar)

DN_MODIFY
A file was modified (write (2), pwrite (2), writev (2), truncate(2), ftruncate(2),
and similar).

DN_CREATE
A file was created (open(2), creat(2), mknod(2), mkdir (2), link (2), sym-
link (2), rename(2) into this directory).

DN_DELETE
A file was unlinked (unlink (2), rename(2) to another directory,rmdir (2)).

DN_RENAME
A file was renamed within this directory (rename(2)).

DN_ATTRIB
The attributes of a file were changed (chown(2), chmod(2), utime(2), utimen-
sat(2), and similar).

(In order to obtain these definitions, the_GNU_SOURCEfeature test macro must be defined
before includinganyheader files.)

Directory notifications are normally "one-shot", and the application must reregister to receive
further notifications.Alternatively, if DN_MULTISHOT is included inarg, then notification
will remain in effect until explicitly removed.

A series ofF_NOTIFY requests is cumulative, with the events in arg being added to the set
already monitored.To disable notification of all events, make an F_NOTIFY call specifying
arg as 0.

Notification occurs via delivery of a signal. The default signal isSIGIO , but this can be
changed using theF_SETSIG command tofcntl (). (NotethatSIGIO is one of the nonqueu-
ing standard signals; switching to the use of a real-time signal means that multiple notifica-
tions can be queued to the process.)In the latter case, the signal handler receives asiginfo_t
structure as its second argument (if the handler was established usingSA_SIGINFO) and the
si_fd field of this structure contains the file descriptor which generated the notification (useful
when establishing notification on multiple directories).

Linux 2016-10-08 8

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

Especially when usingDN_MULTISHOT , a real time signal should be used for notification,
so that multiple notifications can be queued.

NOTE: New applications should use theinotify interface (available since kernel 2.6.13),
which provides a much superior interface for obtaining notifications of filesystem events. See
inotify (7).

Changing the capacity of a pipe
F_SETPIPE_SZ(int; since Linux 2.6.35)

Change the capacity of the pipe referred to byfd to be at leastarg bytes. Anunprivileged
process can adjust the pipe capacity to any value between the system page size and the limit
defined in/proc/sys/fs/pipe-max-size(seeproc(5)). Attemptsto set the pipe capacity below
the page size are silently rounded up to the page size. Attempts by an unprivileged process to
set the pipe capacity above the limit in /proc/sys/fs/pipe-max-sizeyield the errorEPERM; a
privileged process (CAP_SYS_RESOURCE) can override the limit.

When allocating the buffer for the pipe, the kernel may use a capacity larger thanarg, if that is
convenient for the implementation.(In the current implementation, the allocation is the next
higher power-of-two page-size multiple of the requested size.)The actual capacity (in bytes)
that is set is returned as the function result.

Attempting to set the pipe capacity smaller than the amount of buffer space currently used to
store data produces the errorEBUSY.

F_GETPIPE_SZ (void; since Linux 2.6.35)
Return (as the function result) the capacity of the pipe referred to byfd.

File Sealing
File seals limit the set of allowed operations on a given file. For each seal that is set on a file, a specific
set of operations will fail withEPERM on this file from now on. Thefile is said to be sealed.The
default set of seals depends on the type of the underlying file and filesystem.For an overview of file
sealing, a discussion of its purpose, and some code examples, seememfd_create(2).

Currently, only the tmpfs(5) filesystem supports sealing.On other filesystems, allfcntl () operations
that operate on seals will returnEINVAL .

Seals are a property of an inode.Thus, all open file descriptors referring to the same inode share the
same set of seals. Furthermore, seals can never be removed, only added.

F_ADD_SEALS (int; since Linux 3.17)
Add the seals given in the bit-mask argumentarg to the set of seals of the inode referred to by
the file descriptorfd. Seals cannot be removed again. Oncethis call succeeds, the seals are
enforced by the kernel immediately. If the current set of seals includesF_SEAL_SEAL (see
below), then this call will be rejected withEPERM. Adding a seal that is already set is a no-
op, in caseF_SEAL_SEAL is not set already. In order to place a seal, the file descriptorfd
must be writable.

F_GET_SEALS (void; since Linux 3.17)
Return (as the function result) the current set of seals of the inode referred to byfd. If no seals
are set, 0 is returned.If the file does not support sealing, −1 is returned anderrno is set to
EINVAL .

The following seals are available:

F_SEAL_SEAL
If this seal is set, any further call tofcntl () with F_ADD_SEALS will fail with EPERM.
Therefore, this seal prevents any modifications to the set of seals itself. If the initial set of
seals of a file includesF_SEAL_SEAL, then this effectively causes the set of seals to be con-
stant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. This affectsopen(2) with the
O_TRUNC flag as well astruncate(2) andftruncate(2). Thosecalls will fail with EPERM

Linux 2016-10-08 9

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

if you try to shrink the file in question. Increasing the file size is still possible.

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased.This affects write (2)
beyond the end of the file,truncate(2), ftruncate(2), andfallocate(2). Thesecalls will fail
with EPERM if you use them to increase the file size. If you keep the size or shrink it, those
calls still work as expected.

F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the file.Note that shrinking or growing
the size of the file is still possible and allowed. Thus,this seal is normally used in combina-
tion with one of the other seals. This seal affectswrite (2) andfallocate(2) (only in combina-
tion with theFALLOC_FL_PUNCH_HOLE flag). Thosecalls will fail with EPERM if this
seal is set. Furthermore, trying to create new shared, writable memory-mappings via
mmap(2) will also fail withEPERM.

Using theF_ADD_SEALS operation to set theF_SEAL_WRITE seal will fail withEBUSY
if any writable, shared mapping exists. Suchmappings must be unmapped before you can add
this seal. Furthermore, if there are any asynchronous I/O operations (io_submit(2)) pending
on the file, all outstanding writes will be discarded.

RETURN VALUE
For a successful call, the return value depends on the operation:

F_DUPFD The new file descriptor.

F_GETFD Value of file descriptor flags.

F_GETFL Value of file status flags.

F_GETLEASE
Type of lease held on file descriptor.

F_GETOWN Value of file descriptor owner.

F_GETSIG Value of signal sent when read or write becomes possible, or zero for traditional
SIGIO behavior.

F_GETPIPE_SZ, F_SETPIPE_SZ
The pipe capacity.

F_GET_SEALS
A bit mask identifying the seals that have been set for the inode referred to byfd.

All other commands
Zero.

On error, −1 is returned, anderrno is set appropriately.

ERRORS
EACCES or EAGAIN

Operation is prohibited by locks held by other processes.

EAGAIN
The operation is prohibited because the file has been memory-mapped by another process.

EBADF
fd is not an open file descriptor

EBADF
cmd is F_SETLK or F_SETLKW and the file descriptor open mode doesn’t match with the
type of lock requested.

EBUSY
cmd is F_SETPIPE_SZand the new pipe capacity specified inarg is smaller than the amount
of buffer space currently used to store data in the pipe.

EBUSY
cmd is F_ADD_SEALS, arg includesF_SEAL_WRITE , and there exists a writable, shared
mapping on the file referred to byfd.

Linux 2016-10-08 10

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

EDEADLK
It was detected that the specifiedF_SETLKW command would cause a deadlock.

EFAULT
lock is outside your accessible address space.

EINTR
cmd is F_SETLKW or F_OFD_SETLKW and the operation was interrupted by a signal; see
signal(7).

EINTR
cmd is F_GETLK , F_SETLK , F_OFD_GETLK , or F_OFD_SETLK, and the operation
was interrupted by a signal before the lock was checked or acquired. Most likely when lock-
ing a remote file (e.g., locking over NFS), but can sometimes happen locally.

EINVAL
The value specified incmd is not recognized by this kernel.

EINVAL
cmd is F_ADD_SEALSandarg includes an unrecognized sealing bit.

EINVAL
cmd is F_ADD_SEALS or F_GET_SEALS and the filesystem containing the inode referred
to by fd does not support sealing.

EINVAL
cmd is F_DUPFD andarg is negative or is greater than the maximum allowable value (see the
discussion ofRLIMIT_NOFILE in getrlimit (2)).

EINVAL
cmd is F_SETSIG andarg is not an allowable signal number.

EINVAL
cmd is F_OFD_SETLK, F_OFD_SETLKW , or F_OFD_GETLK , and l_pid was not speci-
fied as zero.

EMFILE
cmd is F_DUPFD and the per-process limit on the number of open file descriptors has been
reached.

ENOLCK
Too many segment locks open, lock table is full, or a remote locking protocol failed (e.g.,
locking over NFS).

ENOTDIR
F_NOTIFY was specified incmd, but fd does not refer to a directory.

EPERM
cmd is F_SETPIPE_SZand the soft or hard user pipe limit has been reached; seepipe(7).

EPERM
Attempted to clear theO_APPENDflag on a file that has the append-only attribute set.

EPERM
cmd was F_ADD_SEALS, but fd was not open for writing or the current set of seals on the
file already includesF_SEAL_SEAL.

CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.Only the operationsF_DUPFD, F_GETFD, F_SETFD, F_GETFL ,
F_SETFL, F_GETLK , F_SETLK , andF_SETLKW are specified in POSIX.1-2001.

F_GETOWN andF_SETOWN are specified in POSIX.1-2001.(To get their definitions, define either
_XOPEN_SOURCEwith the value 500 or greater, or _POSIX_C_SOURCEwith the value 200809L
or greater.)

F_DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition, define
_POSIX_C_SOURCEwith the value 200809L or greater, or _XOPEN_SOURCEwith the value 700
or greater.)

Linux 2016-10-08 11

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

F_GETOWN_EX, F_SETOWN_EX, F_SETPIPE_SZ, F_GETPIPE_SZ, F_GETSIG, F_SETSIG,
F_NOTIFY , F_GETLEASE, and F_SETLEASE are Linux-specific. (Define the_GNU_SOURCE
macro to obtain these definitions.)

F_OFD_SETLK, F_OFD_SETLKW , and F_OFD_GETLK are Linux-specific (and one must define
_GNU_SOURCEto obtain their definitions), but work is being done to have them included in the next
version of POSIX.1.

F_ADD_SEALSandF_GET_SEALSare Linux-specific.

NOTES
The errors returned bydup2(2) are different from those returned byF_DUPFD.

File locking
The original Linuxfcntl () system call was not designed to handle large file offsets (in theflock struc-
ture). Consequently, an fcntl64() system call was added in Linux 2.4.The newer system call employs
a different structure for file locking,flock64, and corresponding commands,F_GETLK64 ,
F_SETLK64, and F_SETLKW64. Howev er, these details can be ignored by applications using glibc,
whosefcntl () wrapper function transparently employs the more recent system call where it is available.

Record locks
Since kernel 2.0, there is no interaction between the types of lock placed byflock(2) andfcntl ().

Several systems have more fields instruct flock such as, for example,l_sysid. Clearly, l_pid alone is
not going to be very useful if the process holding the lock may live on a different machine.

The original Linuxfcntl () system call was not designed to handle large file offsets (in theflock struc-
ture). Consequently, an fcntl64() system call was added in Linux 2.4. The newer system call employs
a different structure for file locking,flock64, and corresponding commands,F_GETLK64 ,
F_SETLK64, and F_SETLKW64. Howev er, these details can be ignored by applications using glibc,
whosefcntl () wrapper function transparently employs the more recent system call where it is available.

Record locking and NFS
Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of time (defined as
more than 90 seconds with no communication), it might lose and regain a lock without ever being
aw are of the fact. (Theperiod of time after which contact is assumed lost is known as the NFSv4 lease-
time. Ona Linux NFS server, this can be determined by looking at/proc/fs/nfsd/nfsv4leasetime, which
expresses the period in seconds. The default value for this file is 90.)This scenario potentially risks
data corruption, since another process might acquire a lock in the intervening period and perform file
I/O.

Since Linux 3.12, if an NFSv4 client loses contact with the server, any I/O to the file by a process
which "thinks" it holds a lock will fail until that process closes and reopens the file.A kernel parame-
ter, nfs.recover_lost_locks, can be set to 1 to obtain the pre-3.12 behavior, whereby the client will
attempt to recover lost locks when contact is reestablished with the server. Because of the attendant
risk of data corruption, this parameter defaults to 0 (disabled).

BUGS
F_SETFL

It is not possible to useF_SETFL to change the state of theO_DSYNC andO_SYNC flags. Attempts
to change the state of these flags are silently ignored.

F_GETOWN
A l imitation of the Linux system call conventions on some architectures (notably i386) means that if a
(negative) process group ID to be returned byF_GETOWN falls in the range −1 to −4095, then the
return value is wrongly interpreted by glibc as an error in the system call; that is, the return value of
fcntl () will be −1, anderrno will contain the (positive) process group ID.The Linux-specific
F_GETOWN_EX operation avoids this problem.Since glibc version 2.11, glibc makes the kernel
F_GETOWN problem invisible by implementingF_GETOWN usingF_GETOWN_EX.

Linux 2016-10-08 12

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl


FCNTL(2) LinuxProgrammer’s Manual FCNTL(2)

F_SETOWN
In Linux 2.4 and earlier, there is bug that can occur when an unprivileged process usesF_SETOWN to
specify the owner of a socket file descriptor as a process (group) other than the caller. In this case,
fcntl () can return −1 witherrno set toEPERM, even when the owner process (group) is one that the
caller has permission to send signals to.Despite this error return, the file descriptor owner is set, and
signals will be sent to the owner.

Deadlock detection
The deadlock-detection algorithm employed by the kernel when dealing withF_SETLKW requests
can yield both false negatives (failures to detect deadlocks, leaving a set of deadlocked processes
blocked indefinitely) and false positives (EDEADLK errors when there is no deadlock).For example,
the kernel limits the lock depth of its dependency search to 10 steps, meaning that circular deadlock
chains that exceed that size will not be detected.In addition, the kernel may falsely indicate a deadlock
when two or more processes created using theclone(2) CLONE_FILES flag place locks that appear
(to the kernel) to conflict.

Mandatory locking
The Linux implementation of mandatory locking is subject to race conditions which render it unreli-
able: awrite (2) call that overlaps with a lock may modify data after the mandatory lock is acquired; a
read(2) call that overlaps with a lock may detect changes to data that were made only after a write lock
was acquired. Similarraces exist between mandatory locks andmmap(2). It is therefore inadvisable
to rely on mandatory locking.

SEE ALSO
dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), feature_test_macros(7), lslocks(8)

locks.txt, mandatory-locking.txt, and dnotify.txt in the Linux kernel source directoryDocumenta-
tion/filesystems/(on older kernels, these files are directly under theDocumentation/directory, and
mandatory-locking.txtis calledmandatory.txt)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2016-10-08 13

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+fcntl

