
GETPRIORITY(2) LinuxProgrammer’s Manual GETPRIORITY(2)

NAME
getpriority, setpriority − get/set program scheduling priority

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated bywhich and who is
obtained with thegetpriority() call and set with thesetpriority() call. The process attribute dealt with
by these system calls is the same attribute (also known as the "nice" value) that is dealt with bynice(2).

The valuewhich is one ofPRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier forPRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID forPRIO_USER). A zero value forwhodenotes (respectively) the call-
ing process, the process group of the calling process, or the real user ID of the calling process.

The prio argument is a value in the range −20 to 19 (but see NOTES below). with −20 being the high-
est priority and 19 being the lowest priority. Attempts to set a priority outside this range are silently
clamped to the range. The default priority is 0; lower values give a process a higher scheduling prior-
ity.

Thegetpriority() call returns the highest priority (lowest numerical value) enjoyed by any of the speci-
fied processes.Thesetpriority() call sets the priorities of all of the specified processes to the specified
value.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher priority).However,
since Linux 2.6.12, an unprivileged process can decrease the nice value of a target process that has a
suitableRLIMIT_NICE soft limit; seegetrlimit(2) for details.

RETURN VALUE
On success,getpriority() returns the calling thread’s nice value, which may be a negative number. On
error, it returns −1 and setserrno to indicate the cause of the error. Since a successful call togetprior-
ity() can legitimately return the value −1, it is necessary to clear the external variableerrno prior to the
call, then check it afterward to determine if −1 is an error or a legitimate value.

setpriority() returns 0 on success. On error, it returns −1 and setserrno to indicate the cause of the
error.

ERRORS
EINVAL

whichwas not one ofPRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

ESRCH
No process was located using thewhichandwhovalues specified.

In addition to the errors indicated above, setpriority() may fail if:

EACCES
The caller attempted to set a lower nice value (i.e., a higher process priority), but did not have
the required privilege (on Linux: did not have theCAP_SYS_NICE capability).

EPERM
A process was located, but its effective user ID did not match either the effective or the real
user ID of the caller, and was not privileged (on Linux: did not have the CAP_SYS_NICE
capability). Butsee NOTES below.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

Linux 2016-12-12 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+getpriority


GETPRIORITY(2) LinuxProgrammer’s Manual GETPRIORITY(2)

NOTES
For further details on the nice value, seesched(7).

Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice value no longer has its
traditional effect in many circumstances. For details, seesched(7).

A child created byfork(2) inherits its parent’s nice value. Thenice value is preserved across
execve(2).

The details on the condition forEPERM depend on the system. The above description is what
POSIX.1-2001 says, and seems to be followed on all SystemV-like systems. Linuxkernels before
2.6.12 required the real or effective user ID of the caller to match the real user of the processwho
(instead of its effective user ID). Linux 2.6.12 and later require the effective user ID of the caller to
match the real or effective user ID of the processwho. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2,
4.3BSD, FreeBSD 4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.

Including<sys/time.h>is not required these days, but increases portability. (Indeed,<sys/resource.h>
defines therusagestructure with fields of typestruct timevaldefined in<sys/time.h>.)

C library/kernel differences
Within the kernel, nice values are actually represented using the range 40..1 (since negative numbers
are error codes) and these are the values employed by thesetpriority() andgetpriority() system calls.
The glibc wrapper functions for these system calls handle the translations between the user-land and
kernel representations of the nice value according to the formulaunice = 20 − knice. (Thus, the ker-
nel’s 40..1 range corresponds to the range −20..19 as seen by user space.)

BUGS
According to POSIX, the nice value is a per-process setting.However, under the current Linux/NPTL
implementation of POSIX threads, the nice value is a per-thread attribute: different threads in the same
process can have different nice values. Portableapplications should avoid relying on the Linux behav-
ior, which may be made standards conformant in the future.

SEE ALSO
nice(1), renice(1), fork(2), capabilities(7), sched(7)

Documentation/scheduler/sched-nice-design.txtin the Linux kernel source tree (since Linux 2.6.23)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2016-12-12 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+getpriority

