fedora 26 man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)
NAME

getrlimit, setrlimit, prlimit — get/set resource limits
SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource struct rlimit * rlim);
int setrlimit(int resource const struct rlimit * rlim);

int prlimit(pid_t pid, int resource const struct rlimit * new_limit,
struct rlimit * old_limit);

Feature Test Macro Requirements for glibc feeture_test _macro$7)):

prlimit (): _GNU_SOURCE

DESCRIPTION
Thegetrlimit () andsetrlimit () system calls get and set resource limits resggeti Each resource has
an associated soft and hard limit, as defined bylith@ structure:

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

k

The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts
as a ceiling for the soft limit; an unpileged process may set only its soft limit toadue in the range

from 0 up to the hard limit, and (irrersibly) lower its hard limit. A privileged process (under Linux:

one with theCAP_SYS RESOURCEcapability) may mad abitrary changes to either limit value.

The \alue RLIM_INFINITY denotes no limit on a resource (both in the structure returnegktiy
limit () and in the structure passedstidrlimit ()).

Theresourceargument must be one of:

RLIMIT_AS
The maximum size of the processirtual memory (address space) in bytes. This linféci
calls to brk(2), mmap(2), and mremap(2), which fail with the erroENOMEM upon
exceeding this limit. Also automatic stack expansion véill fand generate aIGSEGV that
kills the process if no alternate stack has been medllalse viasigaltstack(2)). Sincethe
vaue is along, on machines with a 32-bilong either this limit is at most 2 GiB, or this
resource is unlimited.

RLIMIT_CORE
Maximum size of acore file (seecore(5)). When0 no ore dump files are createdVhen
nonzero, larger dumps are truncated to this size.

RLIMIT_CPU
CPU time limit in secondsWhen the process reaches the soft limit, it is seBlGXCPU
signal. Thedefault action for this signal is to terminate the procddswever, the signal can
be caught, and the handler can return control to the main program. If the process continues to
consume CPU time, it will be seBtGXCPU once per second until the hard limit is reached,
at which time it is senBIGKILL . (This latter point describes Linux betar. Implementa-
tions vary in hav they treat processes which continue to consume CPU time after reaching the
soft limit. Portable applications that need to catch this signal should perform an orderly termi-
nation upon first receipt @IGXCPU.)

RLIMIT_D ATA
The maximum size of the procesghta sgment (initialized data, uninitialized data, and
heap). Thidimit affects calls tobrk (2) andsbrk(2), which fail with the erroENOMEM
upon encountering the soft limit of this resource.

OhAn
f

A nux 2016-10-08 1

https://man.m.sourcentral.org/f26/2+getrlimit

fedora 26 man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

RLIMIT_FSIZE
The maximum size of files that the process may create. Attempts to extend a file beyond this
limit result in delvery of aSIGXFSZ signal. Bydefault, this signal terminates a process, b
a process can catch this signal instead, in which case therrekystem call (e.gwrite (2),
truncate(2)) fails with the erroEFBIG.

RLIMIT_LOCKS (Early Linux 2.4 only)
A limit on the combined number @ibck(2) locks andfcntl(2) leases that this process may
establish.

RLIMIT_MEMLOCK
The maximum number of bytes of memory that may bedddkto RAM. In effect this limit
is rounded down to the nearest multiple of the system page size. This fentsaflock(2)
and mlockall(2) and themmap(2) MAP_LOCKED operation. SinceLinux 2.6.9 it also
affects theshmctl(2) SHM_LOCK operation, where it sets a maximum on the total bytes in
shared memory segments (skenge(2)) that may be locked by the real user ID of the calling
process. Thehmctl(2) SHM_LOCK locks are accounted for separately from thepgrecess
memory locks established hylock(2), mlockall(2), and mmap(2) MAP_LOCKED ; a
process can lock bytes up to this limit in each of thesecategories.

In Linux kernels before 2.6.9, this limit controlled the amount of memory that could bedlock

by a prvileged process. Since Linux 2.6.9, no limits are placed on the amount of memory that
a privileged process may lock, and this limit insteadegas the amount of memory that an
unprivileged process may lock.

RLIMIT_MSGQUEUE (since Linux 2.6.8)
Specifies the limit on the number of bytes that can be allocated for POSIX message queues for
the real user ID of the calling process. This limit is enforceanigropen(3). Eachmessage
gueue that the user creates counts (until it is vedjcagainst this limit according to the for
mula:

Since Linux 3.5:

bytes = attr.mg_maxmsg * sizeof(struct msg_msg) +
min(attr.mg_maxmsg, MQ_PRIO_MAX) *
sizeof(struct posix_msg_tree_node)+
/* For overhead */
attr.mqg_maxmsg * attr.mg_msgsize;
/* For message data */

Linux 3.4 and earlier:

bytes = attr.mg_maxmsg * sizeof(struct msg_msg *) +
/* For overhead */
attr.mqg_maxmsg * attr.mg_msgsize;
/* For message data */

whereattr is the mq_attr structure specified as the fourth argumenintp open(3), and the
msg_ms@nd posix_msg_tree_nodtructures are kernel-internal structures.

The "overhead" addend in the formula accounts feerbead bytes required by the implemen-
tation and ensures that the user cannot create an unlimited number of zero-length messages
(such messagesveetheless each consume some system memory for bookkeegihgad).

RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)
Specifies a ceiling to which the processce value can be raised usisgtpriority (2) or
nice(2). Theactual ceiling for the nicealue is calculated &0 — rlim_cur. The useful range
for this limit is thus from 1 (corresponding to a nice value of 19) to 40 (corresponding to a
nice value of -20). This unusual choice of range &s wecessary becaus@aie rumbers
cannot be specified as resource linatues, since thetypically have gecial meaningsFor
example,RLIM_INFINITY typically is the same as —I-or more detail on the nicealue,

OhAn
f

A 2016-10-08 2

https://man.m.sourcentral.org/f26/2+getrlimit

fedora 26

man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

seesched?7).

RLIMIT_NOFILE
Specifies a value one greater than the maximum file descriptor number that can be opened by
this process. Attemptpen(2), pipe(2), dup(2), etc.) to exceed this limit yield the error
EMFILE . (Historically, this limit was named@®LIMIT_OFILE on BSD.)

RLIMIT_NPROC
The maximum number of processes (oore precisely on Linux, threads) that can be created
for the real user ID of the calling process. Upon encountering this forkit(2) fails with the
error EAGAIN. This limit is not enforced for processes thatvéhaather the
CAP_SYS_ADMIN or theCAP_SYS RESOURCEcapability.

RLIMIT_RSS
Specifies the limit (in bytes) of the proces&sident set (the number of virtual pages resident
in RAM). This limit has effect only in Linux 2.4.x, x < 30, and thereab only calls to
madvisg?2) specifyingMADV_WILLNEED .

RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)
Specifies a ceiling on the real-time priority that may be set for this process using
sched_setschedulé®) andsched_setparan®).

For further details on real-time scheduling policies, sg#ed7)

RLIMIT_RTTIME (since Linux 2.6.25)
Specifies a limit (in microseconds) on the amount of CPU time that a process scheduled under
a real-time scheduling polcmay consume without making a blocking system ckfr the
purpose of this limit, each time a process ezl blocking system call, the count of its con-
sumed CPU time is reset to zero. The CPU time count is not reset if the process continues try-
ing to use the CPU but is preempted, its time slice expires, or ischlisl_yield2).

Upon reaching the soft limit, the process is seBt@XCPU signal. Ifthe process catches or
ignores this signal and continues consuming CPU time, $i&XCPU will be generated
once each second until the hard limit is reached, at which point the process iSIS&KILA
signal.

The intended use of this limit is to stop a nwag real-time process from locking up the sys-
tem.

For further details on real-time scheduling policies, sged7)

RLIMIT_SIGPENDING (since Linux 2.6.8)
Specifies the limit on the number of signals that may be queued for the real user ID of the call-
ing process.Both standard and real-time signals are counted for the purpose of checking this
limit. However, the limit is enforced only fosigqueud3); it is alvays possible to uskill (2)
to queue one instance ofyanf the signals that are not already queued to the process.

RLIMIT_ST ACK
The maximum size of the process stack, in bytd#son reaching this limit, SIGSEGV sig-
nal is generated.To handle this signal, a process must empém dternate signal stack
(sigaltstack2)).

Since Linux 2.6.23, this limit also determines the amount of space used for the pramass’
mand-line arguments and environment variables; for detailexses€?2).

prlimit()

[=]""%: =]
fi
[=] 221 Linux

The Linux-specificprlimit () system call combines and extends the functionalitgetflimit () and
getrlimit (). It can be used to both set and get the resource limits of an arbitrary process.

Theresourceargument has the same meaning asétrimit () andgetrlimit ().

If the new_limitargument is a not NULL, then thémit structure to which it points is used to setvne
values for the soft and hard limits foesource If the old_limit agument is a not NULL, then a

2016-10-08 3

https://man.m.sourcentral.org/f26/2+getrlimit

=
f

fedora 26 man.m.sourcentral.org

[=

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

successful call tgrlimit () places the previous soft and hard limits fegourcein therlimit structure
pointed to byold_limit.

The pid argument specifies the ID of the process on which the call is to opdfgtéd is 0, then the

call applies to the calling proces$o st or get the resources of a process other than itself, the caller
must hae the CAP_SYS RESOURCE capability in the user namespace of the process whose
resource limits are being changed, or the reéctife, and saed st user IDs of the target process
must match the real user ID of the cabrd the real, dective, and saed st group IDs of the tget
process must match the real group ID of the caller.

RETURN VALUE
On success, these system calls return 0. On, ettds returned, anerrnois set appropriately.
ERRORS
EFAULT
A pointer argument points to a location outside the accessible address space.
EINVAL
The value specified iresourceis not valid; oy for setrlimit() or prlimit (): rlim—>rlim_cur
was geater thamlim->rlim_max.
EPERM
An unprivileged process tried to raise the hard limit; @&P_SYS_ RESOURCEcapability
is required to do this.
EPERM
The caller tried to increase the h&UdIMIT_NOFILE limit above the maximum defined by
Iproc/sysl/fsinr_ope(seeproc(b))
EPERM
(prlimit ()) The calling process did notVe permission to set limits for the process specified
by pid.
ESRCH
Could not find a process with the ID specifiegbiith.
VERSIONS
Theprlimit () system call is\&ilable since Linux 2.6.36. Library support igadable since glibc 2.13.

ATTRIBUTES
For an eplanation of the terms used in this section,a&éutes(7).

Interface Attrib ute Value
getrlimit (), setrlimit (), prlimit () Thread safety| MT-Saf¢

1%

CONFORMING TO
getrlimit (), setrlimit (): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.
prlimit (): Linux-specific.

RLIMIT_MEMLOCK andRLIMIT_NPROC derive from BSD and are not specified in POSIX.1;
they are present on the BSDs and Linux, but ow fether implementationsRLIMIT_RSS derives
from BSD and is not specified in POSIX.1; it isverheless present on most implementations.

RLIMIT_MSGQUEUE , RLIMIT_NICE , RLIMIT_RTPRIO , RLIMIT_RTTIME , and
RLIMIT_SIGPENDING are Linux-specific.

NOTES
A child process created viark (2) inherits its parerd’resource limits. Resource limits are preserv
acrosexecvé?).

Lowering the soft limit for a resource beldhe process’ aurrent consumption of that resource will
succeed (but will preent the process from further increasing its consumption of the resource).

One can set the resource limits of the shell using dileib ulimit command l{mit in csh(1)). The
shell’s resource limits are inherited by the processes that it createsctdeecommands.

A 2016-10-08 4

https://man.m.sourcentral.org/f26/2+getrlimit

fedora 26 man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

Since Linux 2.6.24, the resource limits ofygorocess can be inspected Vi@oc/[pid]/limits; see
proc(5).

Ancient systems providedwimit () function with a similar purpose setrlimit (). For backward com-
patibility, glibc also providewlimit (). All new applications should be written usisgtrlimit ().

C library/ kernel ABI differences
Since version 2.13, the glilgetrlimit () andsetrlimit () wrapper functions no longenioke the corre-
sponding system calls, but instead emmdimit (), for the reasons described in BUGS.

The name of the glibc wrapper functiorpidimit (); the underlying system call Blimit64 ().

BUGS
In older Linux kernels, th8IGXCPU andSIGKILL signals deliered when a process encountered the
soft and hardRLIMIT_CPU limits were delered one (CPU) second later thanytiskould hae keen.
This was fixed in kernel 2.6.8.

In 2.6.x kernels before 2.6.17, RLIMIT_CPU limit of O is wrongly treated as "no limit" (lk
RLIM_INFINITY). SincelLinux 2.6.17, setting a limit of O doesv®aan dfect, but is actually treated
as a limit of 1 second.

A kernel bug means th&LIMIT_RTPRIO does not work in kernel 2.6.12; the problem is fixed in
kernel 2.6.13.

In kernel 2.6.12, there was arf-bf/-one mismatch between the priority ranges returnedelgyrior-
ity (2) andRLIMIT_NICE . This had the ééct that the actual ceiling for the nice value was calculated
as19 - rlim_cur. This was fixed in kernel 2.6.13.

Since Linux 2.6.12, if a process reaches its RaftMIT _CPU limit and has a handler installed for
SIGXCPU, then, in addition to woking the signal handlethe kernel increases the soft limit by one
second. Thidbehaior repeats if the process continues to consume CPU time, until the hard limit is
reached, at which point the process is kill€ther implementations do not change RiéMIT_CPU

soft limit in this mannerand the Linux behavior is probably not standards conformant; portable appli-
cations shouldwaid relying on this Linux-specific beta@r. The Linux-specifiRLIMIT_RTTIME

limit exhibits the same behavior when the soft limit is encountered.

Kernels before 2.4.22 did not diagnose the eBINVAL for setrlimit () whenrlim—>rlim_cur was
greater thamlim—>rlim_max.

Representation of "large" resource limit values on 32-bit platforms
The glibcgetrlimit () andsetrlimit() wrapper functions use a 64-bitm_t data type, wen on 2-bit
platforms. Haevever, the rlim_t data type used in thgetrlimit () and setrlimit() system calls is a
(32-bit) unsigned long Furthermore, in Linux versions before 2.6.36, the kernel represents resource
limits on 32-bit platforms agnsigned long Howeve, a 2-bit data type is not wide enough. The most
pertinent limit here iIRLIMIT_FSIZE , which specifies the maximum size to which a file can grow: to
be useful, this limit must be represented using a type that is as wide as the type used to represent file
offsets—that is, as wide as a 64-lff t (assuming a program compiled withFILE_OFF-
SET_BITS=6)

To work around this kernel limitation, if a program tried to set a resource limit to a vadiee than
can be represented in a 324bitsigned longthen the glibcsetrlimit () wrapper function silently con-
verted the limit value tRLIM_INFINITY . In cother words, the requested resource limit settiag w
silently ignored.

This problem was addressed in Linux 2.6.36 with pincipal changes:

* the addition of a ne kernel representation of resource limits that uses 64 bis,an 2-bit plat-
forms;

* the addition of theorlimit () system call, which employs 64-bit values for its resource limit-ar
ments.

OhAn
f

A 2016-10-08 5

https://man.m.sourcentral.org/f26/2+getrlimit

fedora 26 man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

Since version 2.13, glibc works around the limitations ofgetelimit () andsetrlimit () system calls by
implementingsetrlimit () andgetrlimit () as wrapper functions that callimit ().

EXAMPLE
The program bele demonstrates the use mflimit ().

#define _GNU_SOURCE

#define FILE_OFFSET _BITS 64
#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/resource.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argvl[])
{
struct rlimit old, new;
struct rlimit *newp;
pid_t pid;

if ({(argc == 2 || argc == 4)) {
fprintf(stdert "Usage: %s <pid> [<new-soft-limit> "
"<new—hard-limit>]\n", argv[0]);
exit(EXIT_FAILURE);
}

pid = atoi(agv[1]); [* PID of target process */

newp = NULL;

if (argc == 4) {
new.rlim_cur = atoi(argv|[2]);
new.rlim_max = atoi(argv[3]);
newp = &new;

}

[* Set CPU time limit of target process; reteeand display
previous limit */

if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)
errExit("prlimit—=1");
printf("Previous limits: soft=%lld; hard=%lld\n",
(long long) old.rlim_cur(long long) old.rlim_max);

[* Retrieve and display nev CPU time limit */

if (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)
errExit("prlimit—=2");
printf("New limits: soft=%lld; hard=%lld\n",
(long long) old.rlim_cur(long long) old.rlim_max);

exit(EXIT_FAILURE);
}

SEE ALSO
prlimit (1), dup(2), fcntl(2), fork(2), getrusagd€2), mlock(2), mmap(2), open(2), quotactl(2),
sbrk(2), shmctl(2), malloc(3), sigqueud3), ulimit(3), core(5), capabilities(7), credentialq7),

A nux 2016-10-08 6

https://man.m.sourcentral.org/f26/2+getrlimit

fedora 26 man.m.sourcentral.org

GETRLIMIT(2) Linux Programmes Manual GETRLIMIT(2)

cgroupy7), signal(7)

COLOPHON
This page is part of release 4.09 of the Limen-payes project. Adescription of the project, informa-
tion about reporting bugs, and the latesersion of this page, can be found at
https://www.kernel.org/doc/man—pages/.

A 2016-10-08 7

https://man.m.sourcentral.org/f26/2+getrlimit

