
PIPE(2) LinuxProgrammer’s Manual PIPE(2)

NAME
pipe, pipe2 − create pipe

SYNOPSIS
#include <unistd.h>

int pipe(int pipefd[2]);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Obtain O_* constant definitions */
#include <unistd.h>

int pipe2(int pipefd[2], int flags);

DESCRIPTION
pipe() creates a pipe, a unidirectional data channel that can be used for interprocess communication.
The arraypipefdis used to return two file descriptors referring to the ends of the pipe.pipefd[0] refers
to the read end of the pipe.pipefd[1] refers to the write end of the pipe. Data written to the write end
of the pipe is buffered by the kernel until it is read from the read end of the pipe.For further details,
seepipe(7).

If flags is 0, thenpipe2() is the same aspipe(). Thefollowing values can be bitwise ORed inflagsto
obtain different behavior:

O_CLOEXEC
Set the close-on-exec (FD_CLOEXEC ) flag on the two new file descriptors.See the descrip-
tion of the same flag inopen(2) for reasons why this may be useful.

O_DIRECT (since Linux 3.4)
Create a pipe that performs I/O in "packet" mode.Eachwrite (2) to the pipe is dealt with as a
separate packet, andread(2)s from the pipe will read one packet at a time. Note the following
points:

* Writes of greater thanPIPE_BUF bytes (seepipe(7)) will be split into multiple packets.
The constantPIPE_BUF is defined in<limits.h>.

* If a read(2) specifies a buffer size that is smaller than the next packet, then the requested
number of bytes are read, and the excess bytes in the packet are discarded. Specifying a
buffer size ofPIPE_BUF will be sufficient to read the largest possible packets (see the
previous point).

* Zero-length packets are not supported.(A read(2) that specifies a buffer size of zero is a
no-op, and returns 0.)

Older kernels that do not support this flag will indicate this via anEINVAL error.

O_NONBLOCK
Set theO_NONBLOCK file status flag on the two new open file descriptions. Using this flag
saves extra calls tofcntl (2) to achieve the same result.

RETURN VALUE
On success, zero is returned. On error, −1 is returned, anderrno is set appropriately.

On Linux (and other systems),pipe() does not modifypipefd on failure. Arequirement standardizing
this behavior was added in POSIX.1-2016. The Linux-specificpipe2() system call likewise does not
modify pipefdon failure.

ERRORS
EFAULT

pipefd is not valid.

EINVAL
(pipe2()) Invalid value inflags.

Linux 2016-12-12 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+pipe2


PIPE(2) LinuxProgrammer’s Manual PIPE(2)

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENFILE
The user hard limit on memory that can be allocated for pipes has been reached and the caller
is not privileged; seepipe(7).

VERSIONS
pipe2() was added to Linux in version 2.6.27; glibc support is available starting with version 2.9.

CONFORMING TO
pipe(): POSIX.1-2001, POSIX.1-2008.

pipe2() is Linux-specific.

EXAMPLE
The following program creates a pipe, and thenfork (2)s to create a child process; the child inherits a
duplicate set of file descriptors that refer to the same pipe.After the fork (2), each process closes the
file descriptors that it doesn’t need for the pipe (seepipe(7)). Theparent then writes the string con-
tained in the program’s command-line argument to the pipe, and the child reads this string a byte at a
time from the pipe and echoes it on standard output.

Program source
#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int pipefd[2];
pid_t cpid;
char buf;

if (argc != 2) {
fprintf(stderr, "Usage: %s <string>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (pipe(pipefd) == −1) {
perror("pipe");
exit(EXIT_FAILURE);

}

cpid = fork();
if (cpid == −1) {

perror("fork");
exit(EXIT_FAILURE);

}

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]); /*Close unused write end */

while (read(pipefd[0], &buf, 1) > 0)
write(STDOUT_FILENO, &buf, 1);

Linux 2016-12-12 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+pipe2


PIPE(2) LinuxProgrammer’s Manual PIPE(2)

write(STDOUT_FILENO, "\n", 1);
close(pipefd[0]);
_exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */
close(pipefd[0]); /*Close unused read end */
write(pipefd[1], argv[1], strlen(argv[1]));
close(pipefd[1]); /*Reader will see EOF */
wait(NULL); /* Wait for child */
exit(EXIT_SUCCESS);

}
}

SEE ALSO
fork (2), read(2), socketpair(2), splice(2), write (2), popen(3), pipe(7)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2016-12-12 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+pipe2

