
WRITE(2) LinuxProgrammer’s Manual WRITE(2)

NAME
write − write to a file descriptor

SYNOPSIS
#include <unistd.h>

ssize_t write(int fd , const void *buf , size_t count);

DESCRIPTION
write() writes up tocount bytes from the buffer pointedbuf to the file referred to by the file descriptor
fd.

The number of bytes written may be less thancount if, for example, there is insufficient space on the
underlying physical medium, or theRLIMIT_FSIZE resource limit is encountered (seesetrlimit(2)),
or the call was interrupted by a signal handler after having written less thancount bytes. (Seealso
pipe(7).)

For a seekable file (i.e., one to whichlseek(2) may be applied, for example, a regular file) writing takes
place at the file offset, and the file offset is incremented by the number of bytes actually written. If the
file wasopen(2)ed withO_APPEND, the file offset is first set to the end of the file before writing.The
adjustment of the file offset and the write operation are performed as an atomic step.

POSIX requires that aread(2) that can be proved to occur after awrite() has returned will return the
new data. Notethat not all filesystems are POSIX conforming.

RETURN VALUE
On success, the number of bytes written is returned (zero indicates nothing was written). It is not an
error if this number is smaller than the number of bytes requested; this may happen for example
because the disk device was filled. See also NOTES.

On error, −1 is returned, anderrno is set appropriately.

If count is zero andfd refers to a regular file, thenwrite() may return a failure status if one of the
errors below is detected. Ifno errors are detected, or error detection is not performed, 0 will be
returned without causing any other effect. If count is zero andfd refers to a file other than a regular
file, the results are not specified.

ERRORS
EAGAIN

The file descriptorfd refers to a file other than a socket and has been marked nonblocking
(O_NONBLOCK), and the write would block.See open(2) for further details on the
O_NONBLOCK flag.

EAGAIN or EWOULDBLOCK
The file descriptorfd refers to a socket and has been marked nonblocking (O_NONBLOCK),
and the write would block. POSIX.1-2001 allows either error to be returned for this case, and
does not require these constants to have the same value, so a portable application should check
for both possibilities.

EBADF
fd is not a valid file descriptor or is not open for writing.

EDESTADDRREQ
fd refers to a datagram socket for which a peer address has not been set usingconnect(2).

EDQUOT
The user’s quota of disk blocks on the filesystem containing the file referred to byfd has been
exhausted.

EFAULT
buf is outside your accessible address space.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined maximum file
size or the process’s file size limit, or to write at a position past the maximum allowed offset.

Linux 2016-03-15 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+write


WRITE(2) LinuxProgrammer’s Manual WRITE(2)

EINTR
The call was interrupted by a signal before any data was written; seesignal(7).

EINVAL
fd is attached to an object which is unsuitable for writing; or the file was opened with the
O_DIRECT flag, and either the address specified inbuf , the value specified incount, or the
file offset is not suitably aligned.

EIO A low-level I /O error occurred while modifying the inode.

ENOSPC
The device containing the file referred to byfd has no room for the data.

EPERM
The operation was prevented by a file seal; seefcntl(2).

EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens the writ-
ing process will also receive aSIGPIPE signal. (Thus,the write return value is seen only if
the program catches, blocks or ignores this signal.)

Other errors may occur, depending on the object connected tofd.

CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.

Under SVr4 a write may be interrupted and returnEINTR at any point, not just before any data is writ-
ten.

NOTES
The typessize_t and ssize_t are, respectively, unsigned and signed integer data types specified by
POSIX.1.

A successful return fromwrite() does not make any guarantee that data has been committed to disk.In
fact, on some buggy implementations, it does not even guarantee that space has successfully been
reserved for the data. The only way to be sure is to callfsync(2) after you are done writing all your
data.

If a write() is interrupted by a signal handler before any bytes are written, then the call fails with the
errorEINTR; if it is i nterrupted after at least one byte has been written, the call succeeds, and returns
the number of bytes written.

On Linux, write() (and similar system calls) will transfer at most 0x7ffff 000 (2,147,479,552) bytes,
returning the number of bytes actually transferred. (This is true on both 32-bit and 64-bit systems.)

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regular File Opera-
tions"):

All of the following functions shall be atomic with respect to each other in the effects specified in
POSIX.1-2008 when they operate on regular files or symbolic links: ...

Among the APIs subsequently listed arewrite() andwritev(2). Andamong the effects that should be
atomic across threads (and processes) are updates of the file offset. However, on Linux before version
3.14, this was not the case: if two processes that share an open file description (seeopen(2)) perform a
write() (or writev(2)) at the same time, then the I/O operations were not atomic with respect updating
the file offset, with the result that the blocks of data output by the two processes might (incorrectly)
overlap. Thisproblem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2), writev(2),
fwrite(3)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at

Linux 2016-03-15 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+write


WRITE(2) LinuxProgrammer’s Manual WRITE(2)

https://www.kernel.org/doc/man−pages/.

Linux 2016-03-15 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/2+write

