fedora 26 man.m.sourcentral.org

Exporter::Easy(3) UseZontributed Perl Documentation Exporter::Easy(3)
NAME

Exporter::Easy — Takes the drudgery out of Exporting symbols
SYNOPSIS

In module YourModule.pm:

package YourModule;
use Exporter::Easy (
OK => ['$munge’, 'frobnicate’] # symbols to export on request

);

In other files which wish to use YourModule:

use ModuleName gw(frobnicate); # i mport listed symbols
frobnicate ($left, $right) # calls YourModule::frobnicate
DESCRIPTION

Exporter::Easy makes using Exporter eaByits simplest case, it alls you to drop the boilerplate
code that comes with using Exporter

require Exporter;
use base qw(Exporter);
use vars gw(@EXPORT);
@EXPORT = (init");
becomes
use Exporter::Easy (EXPORT =>['init']);
and more complicated situations where you use tags to build lists and more tags becdike &ésy

use Exporter::Easy (
EXPORT => [qw(init :base)],
TAGS => |
base => [qw(open close)],
read => [qw(read sysread readline)],
write => [qw(print write writeline)],
misc => [gqw(select flush)],
all => [gqw(:base :read :write :misc)],
no_misc => [qw(:all l:misc)],
1,
OK => [gqw(some other stuff)],
);
This will set @EXPORT@EXPORT_QK@EXPORT_FAlLand %EXPORT_TAG® the current
package, add Exporter to that packag@ISAand do ause vars on all the variables mentioned.
The rest is handled as normal by Exporter.

HOW TOUSEIT
Put

use Exporter::Easy (KEY => value, ...);
in your package. Arguments are passesgs/éilue pairs, the followingdys ae available

TAGS
The value should be a reference to a list that goes(fikG_NAME, TAG_VALUE, TAG_NAME,
TAG_VALUE, ..), whereTAG_NAME is a string andrAG_VALUE is a reference to an array of
symbols and tags. For example

TAGS => |
file => ['open’, 'close’, 'read’, 'write'],
string => ['length’, 'substr', ‘chomp'],
hash =>['keys', 'values', 'each'],
all => ["file', ":string', :hash'],
some => [:all', "lopen’, :hash'],

]
This is used to fill th&eEXPORT_TAGS your package. You can build tags from other tags — in

E2EA perlvs.24.2 2015-11-11 1

https://man.m.sourcentral.org/f26/3+Exporter::Easy

fedora 26 man.m.sourcentral.org

Exporter::Easy(3) UseZontributed Perl Documentation Exporter::Easy(3)

the xample abwe the tagall will contain all the symbols frorfile , string andhash. You
can also subtract symbols and tags - in the examplesadmmme contains the symbols from all
but with open removed and all the symbols frorhash removed.

The rule is that ansymbol starting with a "’ is taken to be a tag which has been defined
previously (if it's not defined you’'ll get an error). If a symbol is preceded by a " it will be
subtracted from the list, otherwise it is added.

If you try to redefine a tag you will also get an error.

All the symbols which occur while building the tags are automatically added your package’
@EXPORT_Cdtray.

OK The \alue should be a reference to a list of symbols and tags (which will be exapanded). These
symbols will be added to tt@ EXPORT _Qé¢ray in your package. Usir@k and andOK_ONLY
together will gie an error.

OK_ONLY
The walue should be a reference to a list of symbols and tags (which will be exapanded). The
@EXPORT_Odtray in your package will contains only these symbols.. This totedlyides the
automatic population of this arrayf you just vant to add some symbols to the list that
Exporter::Easy has automatically built then you shouldQisénstead. UsingdK_ONLY andOK
together will gie an error.

EXPORT
The value should be a reference to a list of symbol names and tagsgamwill be expanded and
the resulting list of symbol names will be placed in @EXPOR@rray in your package. The tag
created by theLL key is not available at this stage.

FAIL
The alue should be a reference to a list of symbol names and tags. The tags will be expanded and
the resulting list of symbol names will be placed in @EXPORT_FAllarray in your package.
They will also be added to th@ EXPORT _dlst.

ALL
The value should be the name of tag that dog@t’ exist. This tag will contain a list of all
symbols which can be exported.

ISA If you set this to 0 then Exporter will not be added to y@UBAlist.

VARS
If this is set to 1 or not provided then all $, @ and % variables mentioned previously will be
awailable to use in your package as if you had dongeavars on them. If its st to a reference
to a list of symbols and tags then only those symbols willvaigahle. If it's «t to 0 then youl
have to do your ownuse vars in your package.

PROCESSING ORDER
We reed tak the information provided anduidd @EXPORT@EXPORT_QKQEXPORT_FAlLand
%EXPORT_TAGI8 the calling package. ®vhmay also need to build a tag with all of the symbols and
to male dl the variables useable under strict.

The arguments are processed in the following ort&&S, EXPOR, OK, OK_ONLY and FAIL, ALL,
VARS and finallyISA. This means you cannot use the tag createdly anywhere except iVARS
(although vars defaults to using all symbols anyway).

SEE ALSO
Exporter is the grandaddy of all Exporter modules, and bundled with Perl itself tdikest of the
modules listed here. Look at the documentation for this module to see more explanatio®if the
EXPORTand other variables.

Attribute::Exporter defines attrites which you use to mark which subs and variables you want to
export, and hur.

Exporter::Simple also uses attributes to control the export of functions and variables from your module.
Const::Exporter makes it easy to create a module that exports constants.

Constant::Exporter is another module that esai easy to create modules that define amqmbre
constants.

perl v5.24.2 2015-11-11 2

https://man.m.sourcentral.org/f26/3+Exporter::Easy

fedora 26 man.m.sourcentral.org

Exporter::Easy(3) UseZontributed Perl Documentation Exporter::Easy(3)

Sub::Exporter is a “sophisticated exporter for custom-built routines”; it lets youdeayenerators
that can be used to customise what gets imported when someone uses your module.

Exporter::Tiry provides the same features as Sub::Expdntgmrelying only on core dependencies.

Exporter::Shiy is a $ortcut for Exporter::ihy that provides a more concise notation forvimting
optional exports.

Exporter::Declare provides syntactic sugar to entide export status of your functions part of their
declaration. Kind of.

AppConfig::Exporter lets you export part of an AppConfig—based configuration.
Exporter::Lexical lets you export lexical subs from your module.

Constant::Exporter::Lazy lets you write a module that exports function-style constants, which are
instantiated lazily.

Exporter::Auto will export eerything from your module that it thinks is a public function (name
doesnt start with an underscore).

Class::Exporter lets you export class methods as regular subroutines.
Xporter is like Exporter but with persistent defaults and auto-ISA.

REPOSITORY
<https://github.com/neilb/Exporter—-Easy>

AUTHOR
Written by Fegd Daly <feigd AT esatclear DO ie>.

LICENSE
Under the same license as Perl itself

perl v5.24.2 2015-11-11 3

https://man.m.sourcentral.org/f26/3+Exporter::Easy

