
Exporter::Easy(3) UserContributed Perl Documentation Exporter::Easy(3)

NAME
Exporter::Easy − Takes the drudgery out of Exporting symbols

SYNOPSIS
In module YourModule.pm:

package YourModule;
use Exporter::Easy (

OK => ['$munge', 'frobnicate'] # symbols to export on request
);

In other files which wish to use YourModule:

use ModuleName qw(frobnicate); # i mport listed symbols
frobnicate ($left, $right) # c alls YourModule::frobnicate

DESCRIPTION
Exporter::Easy makes using Exporter easy. In its simplest case, it allows you to drop the boilerplate
code that comes with using Exporter, so

require Exporter;
use base qw(Exporter);
use vars qw(@EXPORT);
@EXPORT = ('init');

becomes

use Exporter::Easy (EXPORT => ['init']);

and more complicated situations where you use tags to build lists and more tags become easy, like this

use Exporter::Easy (
EXPORT => [qw(init :base)],
TAGS => [

base => [qw(open close)],
read => [qw(read sysread readline)],
write => [qw(print write writeline)],
misc => [qw(select flush)],
all => [qw(:base :read :write :misc)],
no_misc => [qw(:all !:misc)],

],
OK => [qw(some other stuff)],

);

This will set @EXPORT, @EXPORT_OK, @EXPORT_FAILand %EXPORT_TAGSin the current
package, add Exporter to that package’s @ISAand do ause vars on all the variables mentioned.
The rest is handled as normal by Exporter.

HOW TO USE IT
Put

use Exporter::Easy (KEY => value, ...);

in your package. Arguments are passes as key-value pairs, the following keys are available

TA GS
The value should be a reference to a list that goes like (TA G_NAME, TAG_VALUE, TAG_NAME,
TA G_VALUE, ...), whereTA G_NAME is a string andTA G_VALUE is a reference to an array of
symbols and tags. For example

TAGS => [
file => ['open', 'close', 'read', 'write'],
string => ['length', 'substr', 'chomp'],
hash => ['keys', 'values', 'each'],
all => [':file', ':string', ':hash'],
some => [':all', '!open', ':hash'],

]

This is used to fill the%EXPORT_TAGSin your package. You can build tags from other tags − in

perl v5.24.2 2015-11-11 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+Exporter::Easy

Exporter::Easy(3) UserContributed Perl Documentation Exporter::Easy(3)

the example above the tagall will contain all the symbols fromfile , string andhash . You
can also subtract symbols and tags − in the example above, some contains the symbols from all
but with open removed and all the symbols fromhash removed.

The rule is that any symbol starting with a ’:’ is taken to be a tag which has been defined
previously (if it’s not defined you’ll get an error). If a symbol is preceded by a ’!’ it will be
subtracted from the list, otherwise it is added.

If you try to redefine a tag you will also get an error.

All the symbols which occur while building the tags are automatically added your package’s
@EXPORT_OKarray.

OK The value should be a reference to a list of symbols and tags (which will be exapanded). These
symbols will be added to the@EXPORT_OKarray in your package. UsingOK and andOK_ONLY
together will give an error.

OK_ONLY
The value should be a reference to a list of symbols and tags (which will be exapanded). The
@EXPORT_OKarray in your package will contains only these symbols.. This totally overrides the
automatic population of this array. If you just want to add some symbols to the list that
Exporter::Easy has automatically built then you should useOK instead. UsingOK_ONLY andOK
together will give an error.

EXPORT
The value should be a reference to a list of symbol names and tags. Any tags will be expanded and
the resulting list of symbol names will be placed in the@EXPORTarray in your package. The tag
created by theALL key is not available at this stage.

FAIL
The value should be a reference to a list of symbol names and tags. The tags will be expanded and
the resulting list of symbol names will be placed in the@EXPORT_FAILarray in your package.
They will also be added to the@EXPORT_OKlist.

ALL
The value should be the name of tag that doesn’t yet exist. This tag will contain a list of all
symbols which can be exported.

ISA If you set this to 0 then Exporter will not be added to your@ISAlist.

VARS
If this is set to 1 or not provided then all $, @ and % variables mentioned previously will be
available to use in your package as if you had done ause vars on them. If it’s set to a reference
to a list of symbols and tags then only those symbols will be available. If it’s set to 0 then you’ll
have to do your ownuse vars in your package.

PROCESSING ORDER
We need take the information provided and build @EXPORT, @EXPORT_OK, @EXPORT_FAILand
%EXPORT_TAGSin the calling package. We may also need to build a tag with all of the symbols and
to make all the variables useable under strict.

The arguments are processed in the following order:TA GS, EXPORT, OK, OK_ONLY and FAIL, ALL,
VARS and finally ISA. This means you cannot use the tag created byALL anywhere except inVARS
(although vars defaults to using all symbols anyway).

SEE ALSO
Exporter is the grandaddy of all Exporter modules, and bundled with Perl itself, unlike the rest of the
modules listed here. Look at the documentation for this module to see more explanation of theOK,
EXPORTand other variables.

Attribute::Exporter defines attributes which you use to mark which subs and variables you want to
export, and how.

Exporter::Simple also uses attributes to control the export of functions and variables from your module.

Const::Exporter makes it easy to create a module that exports constants.

Constant::Exporter is another module that makes it easy to create modules that define and export
constants.

perl v5.24.2 2015-11-11 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+Exporter::Easy

Exporter::Easy(3) UserContributed Perl Documentation Exporter::Easy(3)

Sub::Exporter is a ‘‘sophisticated exporter for custom-built routines’’; it lets you provide generators
that can be used to customise what gets imported when someone uses your module.

Exporter::Tiny provides the same features as Sub::Exporter, but relying only on core dependencies.

Exporter::Shiny is a shortcut for Exporter::Tiny that provides a more concise notation for providing
optional exports.

Exporter::Declare provides syntactic sugar to make the export status of your functions part of their
declaration. Kind of.

AppConfig::Exporter lets you export part of an AppConfig−based configuration.

Exporter::Lexical lets you export lexical subs from your module.

Constant::Exporter::Lazy lets you write a module that exports function-style constants, which are
instantiated lazily.

Exporter::Auto will export everything from your module that it thinks is a public function (name
doesn’t start with an underscore).

Class::Exporter lets you export class methods as regular subroutines.

Xporter is like Exporter, but with persistent defaults and auto-ISA.

REPOSITORY
<https://github.com/neilb/Exporter−Easy>

AUTHOR
Written by Fergal Daly <fergal AT esatclear DOT ie>.

LICENSE
Under the same license as Perl itself

perl v5.24.2 2015-11-11 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+Exporter::Easy

