
Exporter::Lite(3) UserContributed Perl Documentation Exporter::Lite(3)

NAME
Exporter::Lite − lightweight exporting of functions and variables

SYNOPSIS
package Foo;
use Exporter::Lite;

our @EXPORT = qw($This That); # default exports
our @EXPORT_OK = qw(@Left %Right); # optional exports

Then in code using the module:

use Foo;
$This and &That are imported here

You hav eto explicitly ask for optional exports:

use Foo qw/ @Left %Right /;

DESCRIPTION
Exporter::Lite is an alternative to Exporter, intended to provide a lightweight subset of the most
commonly-used functionality. It supportsimport() , @EXPORTand@EXPORT_OKand not a whole
lot else.

Unlike Exporter, it is not necessary to inherit from Exporter::Lite; Ie you don’t need to write:

@ISA = qw(Exporter::Lite);

Exporter::Lite simply exports itsimport() function into your namespace. This might be called a ‘‘mix-
in’’ or a ‘‘role’’.

Setting up a module to export its variables and functions is simple:

package My::Module;
use Exporter::Lite;

our @EXPORT = qw($Foo bar);

Functions and variables listed in the@EXPORTpackage variable are automatically exported if you use
the module and don’t explicitly list any imports. Now, when youuse My::Module , $Foo and
bar() will show up.

Optional exports are listed in the@EXPORT_OKpackage variable:

package My::Module;
use Exporter::Lite;

our @EXPORT_OK = qw($Foo bar);

When My::Module is used,$Foo andbar() will not show up, unless you explicitly ask for them:

use My::Module qw($Foo bar);

Note that when you specify one or more functions or variables to import, then you must also explicitly
list any of the default symbols you want to use. So if you have an exporting module:

package Games;
our @EXPORT = qw/ pacman defender /;
our @EXPORT_OK = qw/ galaga centipede /;

Then if you want to use bothpacman andgalaga , then you’d write:

use Games qw/ pacman galaga /;

Methods
Export::Lite has one public method,import(), which is called automatically when your modules is
use()’d.

In normal usage you don’t hav eto worry about this at all.

perl v5.24.1 2016-01-13 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+Exporter::Lite

Exporter::Lite(3) UserContributed Perl Documentation Exporter::Lite(3)

import
Some::Module−>import;
Some::Module−>import(@symbols);

Works just like Exporter::import() excepting it only honors
@Some::Module::EXPORT and@Some::Module::EXPORT_OK .

The given @symbols are exported to the current package provided they are in
@Some::Module::EXPORT or @Some::Module::EXPORT_OK . Otherwise an exception is
thrown (ie. the program dies).

If @symbols is not given, everything in@Some::Module::EXPORT is exported.

DIAGNOSTICS
’‘‘%s’ ’ is not exported by the%smodule’

Attempted to import a symbol which is not in@EXPORTor @EXPORT_OK.

’Can\’t export symbol:%s’
Attempted to import a symbol of an unknown type (ie. the leading $@% salad wasn’t recognized).

SEE ALSO
Exporter is the grandaddy of all Exporter modules, and bundled with Perl itself, unlike the rest of the
modules listed here.

Attribute::Exporter defines attributes which you use to mark which subs and variables you want to
export, and how.

Exporter::Simple also uses attributes to control the export of functions and variables from your module.

Const::Exporter makes it easy to create a module that exports constants.

Constant::Exporter is another module that makes it easy to create modules that define and export
constants.

Sub::Exporter is a ‘‘sophisticated exporter for custom-built routines’’; it lets you provide generators
that can be used to customise what gets imported when someone uses your module.

Exporter::Tiny provides the same features as Sub::Exporter, but relying only on core dependencies.

Exporter::Shiny is a shortcut for Exporter::Tiny that provides a more concise notation for providing
optional exports.

Exporter::Declare provides syntactic sugar to make the export status of your functions part of their
declaration. Kind of.

AppConfig::Exporter lets you export part of an AppConfig−based configuration.

Exporter::Lexical lets you export lexical subs from your module.

Constant::Export::Lazy lets you write a module that exports function-style constants, which are
instantiated lazily.

Exporter::Auto will export everything from your module that it thinks is a public function (name
doesn’t start with an underscore).

Class::Exporter lets you export class methods as regular subroutines.

Xporter is like Exporter, but with persistent defaults and auto-ISA.

REPOSITORY
<https://github.com/neilb/Exporter−Lite>

AUTHORS
Michael G Schwern <schwern AT pobox DOT com>

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

Seehttp://www.perl.com/perl/misc/Artistic.html

perl v5.24.1 2016-01-13 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+Exporter::Lite

