fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)
NAME

Exporter — Implements default import method for modules
SYNOPSIS

In moduleYourModule.pm:

package YourModule;

require Exporter;

@ISA = gqw(Exporter);

@EXPORT_OK = gw(munge frobnicate); # symbols to export on request

or

package YourModule;
use Exporter 'import'; # gives you Exporter's import() method directly

@EXPORT_OK = gw(munge frobnicate); # symbols to export on request
In other files which wish to uséourModule :

use YourModule gw(frobnicate); # i mport listed symbols

frobnicate ($left, $right) # calls YourModule::frobnicate

Take a bok at “Good Practicesf or some variants you will likto uise in modern Perl code.

DESCRIPTION
The Exporter module implements anport method which allees a module to export functions and
variables to its users’ namespaceédarny modules use Exporter rather than implementing thein o
import method because Exporter provides a highly flexible interface, with an implementation
optimised for the common case.

Perl automatically calls thenport method when processinguae statement for a modulévodules
anduse are documented in perlfunc and perimod. Understanding the concept of modules/ahd ho
use statement operates is important to understanding the Exporter.

How to Export
The arrays@EXPORBEnd @EXPORT_OK a module hold lists of symbols that are going to be
exported into the users name space by default, or whighctire request to bexported, respeately.
The symbols can represent functions, scalars, arrays, hashes gloligperhesymbols must be gén
by full name with the exception that the ampersand in front of a function is optional, e.g.

@EXPORT =gw(afunc $scalar @array); # afunc is a function
@EXPORT_OK = gw(&bfunc %hash *typeglob); # explicit prefix on &bfunc

If you are only gporting function names it is recommended to omit the ampersand, as the
implementation is faster this way.

Selecting What to Export
Do not export method names!

Do not export anything else by default without a good reason!

Exports pollute the namespace of the module. udeyou must export try to us@ EXPORT_OIK
preference t@ EXPORand a&oid short or common symbol names to reduce the risk of name clashes.

Generally anything not exported is still accessible from outside the module using the
YourModule::item_name (or $blessed_ref->method) syntax. Bycorvention you can use
a leading underscore on names to informally indicate thgtafee'internal’ and not for public use.

(It is actually possible to get pete functions by saying:

my $subref =sub { ... };
$subref->(@args); # Call it as a function
$obj—>$subref(@args); # Use it as a method

However if you use them for methods it is up to you to figure out ttxomake inheritance work.)

As a general rule, if the module is trying to be object oriented thpartenothing. If its just a
collection of functions the@EXPORT _Cé¢ything but use@ EXPORWith caution. For function and
method names use bauards in preference to names prefixed with ampersands for the export lists.

Other module design guidelines can be found in perlmod.

00

[= perl v5.24.1 2017-02-11 1

https://man.m.sourcentral.org/f26/3+Exporter

fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)

How to Import
In other files which wish to use your module there are three basis for them to load your module
and import its symbols:

use YourModule;
This imports all the symbols fromo¥rModule’'s @EXPORThto the namespace of these
statement.

use YourModule ();
This causes perl to load your module but does not impgrsanbols.

use YourModule gw(...);
This imports only the symbols listed by the caller into their namespace. All listed symbols must
be in your@EXPOR®r @EXPORT_OQlMese an error occurs. The advanced export features of
Exporter are accessed dikhis, hut with list entries that are syntactically distinct from symbol
names.

Unless you want to use its advanced features, this is probably all you need i kse Exporter.

Advanced Features
Specialised Import Lists
If any of the entries in an import list gms with !, : or / then the list is treated as a series of
specifications which either add to or delete from the list of names to imflugg.are processed left to
right. Specifications are in the form:

['Iname This name only

[':DEFAULT All names in @EXPORT

[']:tag All names in $EXPORT_TAGS{tag} anonymous array
[')/pattern/ All names in @EXPORT and @EXPORT_OK which match

A leading ! indicates that matching names should be deleted from the list of names to import. If the
first specification is a deletion it is treated as though preceded byAUDHEF If you just want to
import extra names in addition to the default set you will still need to includeADBEFexplicitly.

e.g.,Module.pm defines:

@EXPORT =qw(Al A2 A3 A4 A5);
@EXPORT_OK =qw(B1 B2 B3 B4 B5);
%EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1l A2 B3 B4)));

Note that you cannot use tagsS@rEXPORIr @EXPORT_OK
Names inEXPORT_RGS must also appear @ EXPORIr @EXPORT_OK
An application using Module can say something like:
use Module qw(:DEFAULT :T2 IB3 A3);
Other examples include:

use Socket qw(!/TAP]F_/ ISOMAXCONN !SOL_SOCKET);
use POSIX qgw(:errno_h :termios_h ITCSADRAIN /"EXIT/);

Remember that most patterns (using //) will need to be anchored with a leadingd"EXIg@/, rather
than/EXIT/

You can sayBEGIN { $Exporter::Verbose=1 } to see hw the specifications are being
processed and what is actually being imported into modules.

Exporting Without Using Exporter’simport Method
Exporter has a special methodxpert_to lerel’ which is used in situations where you dadirectly
call Exporters import method. The export_to vk method looks like:

MyPackage—>export_to_level(
$where_to_export, $package, @what_to_export
);
where$where_to_export is an integer telling he far up the calling stack to export your symbols,

and @what_to_export is an array telling what symbols *to* export (usually this@s). The
$package argument is currently unused.

00

[= perl v5.24.1 2017-02-11 2

https://man.m.sourcentral.org/f26/3+Exporter

fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)

For example, suppose that youMeaa nodule, A, which already has an import function:
package A;

@ISA = gqw(Exporter);
@EXPORT_OK = qw($b);

sub import
{

$A:b =1, # not a very useful import method
}

and you want to Export symb®A::b back to the module that called package ®ince Exporter
relies on the import method to work, via inheritance, as it st&mgerter::import() will never get
called. Insteadsay the following:

package A;
@ISA = gqw(Exporter);
@EXPORT_OK = qw($b);

sub import
{
$A:b =1;
A—>export_to_level(1, @);
}

This will export the symbols oneVel *abore’ the current package - ie: to the program or module that
used package A.

Note: Be careful not to modify{@ at all before you call>@ort to_level — or people using your
package will get very unexplained results!

Exporting Without Inheriting from Exporter
By including Exporter in you@ISAyou inherit an Exportes’import() method but you also inherit
several other helper methods which you probably tler@nt. 1o avoid this you can do:

package YourModule;
use Exporter gw(import);

which will export Exporters ovn import() method into YurModule. Eerything will work as before
but you wont need to include Exporter i@ YourModule::ISA

Note: This feature was introduced in version 5.57 of Expaodkrased with perl 5.8.3.

Module Version Checking
The Exporter module will caert an attempt to import a number from a module into a call to
$module_name->VERSION($value) . This can be used taiidate that the version of the module
being used is greater than or equal to the required version.

For historical reasons, Exporter suppliesreqjuire_version method that simply dejgtes to
VERSION Originally, before UNIVERSAL::VERSION exsted, Exporter would call
require_version

Since theUNIVERSAL::VERSION method treats th8VERSIONnumber as a simple numerialue
it will regard version 1.10 as lower than 1.Bor this reason it is strongly recommended that you use
numbers with at least tndecimal places, e.g., 1.09.

Managing Unknown Symbols
In some situations you may want to et certain symbols from beingxgorted. Fpically this
applies to extensions whichueafunctions or constants that may not exist on some systems.

The names of gnsymbols that cannot be exported should be listed i@BEXPORT _FAllarray.

If a module attempts to import anf these symbols the Exporter willvgi the module an opportunity
to handle the situation before generating an erfbe Exporter will call anx@ort_fail method with a
list of the failed symbols:

00

=] perl v5.24.1 2017-02-11 3

https://man.m.sourcentral.org/f26/3+Exporter

fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)

@failed_symbols = $module_name->export_fail(@failed_symbols);

If the export_fail method returns an empty list then no error is recorded and all the requested
symbols arexported. Ifthe returned list is not empty then an error is generated for each symbol and
the export ils. TheExporter proides a dedult export_fail method which simply returns the list
unchanged.

Uses for theexport_fall method include giving better error messages for some symbols and
performing lazy architectural checks (put more symbols@EXPORT_FAllby default and then tak
them out if someone actually tries to use them andxpansve theck shows that tigeare usable on

that platform).

Tag Handling Utility Functions
Since the symbols listed withi®%eEXPORT_TAGSnust also appear in eithe@ EXPORTor
@EXPORT_QKvo uility functions are preided which allev you to easily add tagged sets of symbols
to @EXPOR3r @EXPORT_OK

%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

Exporter::export_tags(‘foo"; # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags('bar’); # add aa, cc and dd to @EXPORT_OK

Any names which are not tags are adde@BXPORdr @EXPORT_Q#hchanged ut will trigger a
warning (with —w) to avoid misspelt tags names being silently adde@iXPORdr @EXPORT_OK
Future versions may makhis a fatal error.

Generating Combined Tags
If several symbol categories exist HEXPORT_TAGS's usually useful to create the utilityall’’ to
simplify “use” statements.

The simplest way to do this is:
%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

add all the other ":class" tags to the ":all" class,
deleting duplicates

{

my %seen,;

push @{$EXPORT_TAGS{all}},
grep {!$seen{$_}++} @{SEXPORT_TAGS{$_}} foreach keys %EXPORT_TAGS;

}

CGl.pm creates an':all’’ tag which contains someubnot really all) of its catgories. Thatould be
done with one small change:

add some of the other ":class" tags to the ":all" class,
deleting duplicates

{

my %seen,;

push @{$EXPORT_TAGS{all}},
grep {!$seen{$ }++} @{$SEXPORT_TAGS{$ }}
foreach qw/html2 htmlI3 netscape form cgi internall/;

}

Note that the tag names%EXPORT_TAG®n't havethe leading ;.

AUTOLOABI Constants
Many modules mak use of AUTOLOAIDg for constant subroutines tecéd having to compile and
waste memory on rarely useadlues (see perlsub for details on constant subroutines). Calls to such
constant subroutines are not optimizedaat compile time because thean't be diecled at compile
time for constang

Even if a prototype is\ailable at compile time, the body of the subroutine is not (it hdsen
AUTOLOAEBd yet). perl needs to examine both tfle prototype and the body of a subroutine at

00

[= perl v5.24.1 2017-02-11 4

https://man.m.sourcentral.org/f26/3+Exporter

fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)

compile time to detect that it can safely replace calls to that subroutine with the constant value.
A workaround for this is to call the constants once BE&IN block:
package My ;

use Socket ;

foo(SO _LINGER); ## SO_LINGER NOT optimized away; called at runtime
BEGIN { SO_LINGER}
foo(SO _LINGER); ## SO_LINGER optimized away at compile time.

This forces theAUTOLOADor SO_LINGERto tale dace beforeSO_LINGERis encountered later in
My package.

If you are writing a package th&UTOLOAB, consider forcing a\UTOLOAfor ary constants
explicitly imported by other packages or which are usually used when your packesgedis

Good Practices
Declaring @EXPORT_CQdfd Friends
When usingExporter with the standardtrict andwarnings pragmas, theur keyword is
needed to declare the package varia@&sXPORT_QKREXPORT®ISA etc.

our @ISA = qw(Exporter);
our @EXPORT_OK = gw(munge frobnicate);

If backward compatibility for Perls under 5.6 is important, one must write instesmt avars
statement.

use vars gw(@ISA @EXPORT_OK);
@ISA = qw(Exporter);
@EXPORT_OK = gw(munge frobnicate);

Playing Safe
There are some wgeats with the use of runtime statementse lilequire Exporter and the
assignment to package variables, which can be very subtle for the@renarogrammer This may
happen for instance with mutually recwssinodules, which are affected by the time the varié
constructions arexecuted.

The ideal (but a bit ugly) way to v haveto think about that is to us2EGIN blocks. Sahe first part
of the “SYNOPSIS” code could be rewritten as:

package YourModule;

use strict;
use warnings;

our (@ISA, @EXPORT_OK);
BEGIN {

require Exporter;

@ISA = gqw(Exporter);

@EXPORT_OK = gw(munge frobnicate); # symbols to export on request
}

The BEGIN will assure that the loading oExporter.om and the assignments t@ISA and
@EXPORT_O#kappen immediatelyeaving no room for something to get awry or just plain wrong.

With respect to loadingxporter and inheriting, there are alternass with the use of modules kk
base andparent .

use base qw(Exporter);
or
use parent qw(Exporter);

Any of these statements are nice replacement8EGIN { require Exporter; @ISA =
gw(Exporter); } with the same compile-time fett. Thebasic difference is thatase code
interacts with declarefields while parent is a streamlined version of the oldese code to just
establish the 1S-A relationship.

00

=] perl v5.24.1 2017-02-11 5

https://man.m.sourcentral.org/f26/3+Exporter

fedora 26 man.m.sourcentral.org

Exporter(3) UseContributed Perl Documentation Exporter(3)

For more details, see the documentation and code of base and parent.

Another thorough remedy to that runtime vs. compile-time trap is to use ExporterwiBidy is a
wrapper of Exporter that allows all boilerplate code at a single gulp in the use statement.

use Exporter::Easy (
OK => [gw(munge frobnicate)],
);
@SA setup is automatic
all assignments happen at compile time

What Not to Export
You havebeen warned already in “Selecting What to Expéothot export:

* method names (because you doeed to and that'likely to not do what you want),
» anything by default (because you domant to surprise your users... badly)
e anything you dort’need to (because less is more)

Theres ane more item to add to this lisbo not export variable nameslust becausExporter lets
you do that, it does not mean you should.

@EXPORT_OK = gqw($svar @avar %hvar); # DON'T!

Exporting \ariables is not a good idedhey can change under the hood, yoking horrible effects at-
a-distance that are too hard to track and toTiust me: thg are not worth it.

To provide the capability to set/get class-wide settings, it is best instead ‘meraccessors as
subroutines or class methods instead.

SEE ALSO
Exporter is definitely not the only module with symbol exporter capabilitiés.CPAN, you may
find a bunch of them. Some are light&me provide impreed APIs and features. Pick the one that
fits your needs. The following is a sample list of such modules.

Exporter::Easy

Exporter::Lite
Exporter::Renaming
Exporter::Tidy

Sub::Exporter / Sub::Installer
Perl6::Export / Perl6::Export::Attrs

LICENSE
This library is free softare. You can redistribute it and/or modify it under the same terms as Perl
itself.

00

=] perl v5.24.1 2017-02-11 6

https://man.m.sourcentral.org/f26/3+Exporter

