fedora 26 man.m.sourcentral.org

ExtUtils::XSpp(3) UsecContributed Perl Documentation ExtUtils::XSpp(3)
NAME

ExtUtils::XSpp — XS for C++
SYNOPSIS

Xspp [-—typemap=typemap.xsp [-—typemap=typemap2.xsp]]
[-—xsubpp[=/path/to/xsubpp] [-—Xxsubpp—-args="xsubpp args"]

Foo.xsp

or

perl —-MExtUTtils::XSpp::Cmd —e xspp —— <xspp options and arguments>
In Foo.xs

INCLUDE_COMMAND: $"X —MExtUtils::XSpp::Cmd —e xspp —— <xspp options/arguments>
Using ExtUtils::XSpp::Cmd is equvalent to using thexsspp command line script,xeept that
there is no guarantee fespp to be installed in the systePATH.

OVERVIEW

XS++is just a thin layer wer plain XS, hence to use it you are supposed tovkrab the very least, €
andxs.

This means that you may need typemapsfith the normalXs pre-processoxsubppand thexsS++
pre-processaxspp More on that in th& YPEMAPSsection belar.

COMMAND LINE
——typemap=/path/to/typemap.xsp
Can be specified multiple times to process additional typemap files before th&Swaimput files.
Typemap files are processed the same way as reg#alfiles, except that output code is discarded.

——xsubpp|[=/path/to/xsubpp]
If specified,XS++ will run xsubppafter processing thgS++ input file. If the path tocsubppis not
specifiedxsppexpects to find it in the systeRATH.

——xsubpp—args="extra xsubpp args”
Can be used to pass additional command line argumexgsitbpp

TYPEMAPS
Ordinary XStypemaps
To recap,ordinary XS typemaps do the following three things:

» Associate a C type with an identifier such as T_FOO or O_FOO (which weX%gibehere).
» Define anNPUT mapping for cowerting a Perl data structure to the aforementioned C type.
» Define anOUTPUT mapping for cowerting the C data structure back into a Perl data structure.

These are still required in the contextxsf++. There are some helpers todakay the tedium, but Il
get to that laterfFor XS++, theres another layer of typemaps. The following section will discuss those.

XS++ typemaps
There is nothing special abaxs++ typemap files (i.e. you can put typemaps directly in yrspfile),
but it is handy to hae wmmon typemaps in a separate file, typically catiggbmap.xspo avoid
duplication.

%typemap{<C++ type>Hsimple};

Just letXS++ know that this is a &lid type, the type will be passed unchangedSa@odeexcept that
anyconst qualifiers will be stripped.

%typemap{<C++ reference type>}{reference};

Handle G+ references: theXS variable will be declared as a pointeand it will be eplicitly
dereferenced in the function call. If it is used in the return value, the function will copgtef the
returned value using a cpponstructor.

As a shortcut for the common case of declaring both of theedboa gven type, you may use
%typemap{<C++ type>};
Which has the same effect as:

perl v5.24.1 2017-02-11 1


https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

fedora 26 man.m.sourcentral.org

ExtUtils::XSpp(3) UsecContributed Perl Documentation ExtUtils::XSpp(3)

%typemap{<C++ type>Hsimple};
%typemap{<C++ type>&}Hreference};

For more control @er the type mapping, you can use gfegsed variant as follows.
%typemap{<C++ type 1>KparsedH{%<C++ type 2>%};
WhenC++type 1  is used, replace it witb++ type 2  in the generateds code.

%typemap{<C++ type>Hparsedi
%cpp_type{%<C++ type 2>%]};
%call_function_code{% $CVar = new Foo( $Call ) %},
%cleanup_code{% ... %};
%precall_code{% ... %};

# use only one of the following

%output_code{% $PerlVar = newSViv( $CVar ) %},

%output_list{% PUTBACK; XPUSHi( $CVar ); SPAGAIN %]};
2

Is a more flexible form for thparsed typemap. Allthe parameters are optional.

cpp_type
Specifies the € type used for the variable declaration in the genepvésarbde.

If not specified defaults to the type specified in the typemap.

call_function_code
Used when the typemap applies to the return value of the function.

Specifies the code to use in the function cdlhe special ariables$Call and $CVar are
replaced with the actual call code and the name of theetDirn variable.

output_code
Used when the typemap applies to the return value of the function. Sééaalfaut_list

Specifies the code emitted right after the function call tvebtthe G+ return value into a Perl
return \alue. Thespecial variabl&CVar is replaced with the+€return variable name.

cleanup_code
Used when the typemap applies to the return value of the function.

Specifies some code emitted after output value proces$img special ariables$PerlVar and
$CVar are replaced with the names of the- @ariables containing the Perl scalar and the
corresponding € value.

precall_code
Used when the typemap applies to a parameter.

Specifies some code emitted after argument processing and before calling tietiod. The
special wariables$PerlVar and $CVar are replaced with the names of ther @ariables
containing the Perl scalar and the correspondingallie.

output_list
Used when the typemap applies to the retuatues of the function, as an alternati
%output_code

Specifies some code that manipulates the Perl stack directly in order to return a list. The special
variable $CVar is replaced with thes€name of the output variable.

The code must usBUTBACK/SPAGAIN if appropriate.

Putting all the typemaps together
In summary the XS++ typemaps (optionally) gé you much more controlver the type cowersion
code thas generated for your XSUBs. But you still need to let Xisecompiler knev how to map the
C types to Perl and back using tke typemaps.

Most of the time, you just need to et basic C(++) types or the types that you define with yetr C
classes. For the formetS++ comes with a fe default mappings for booleans, iggrs, floating point
numbers, and stringg-or classesxXS++ can automatically create a mapping of tgpeOBJECTwhich

perl v5.24.1 2017-02-11 2


https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

fedora 26 man.m.sourcentral.org

ExtUtils::XSpp(3) UsecContributed Perl Documentation ExtUtils::XSpp(3)

uses the de-facto standard way of storing a pointer to the C(++) object itv thot of a
referenced/blessed scalBue to backwards compatibiljtthis must be explicitly enabled by adding

%loadplugin{feature::default_xs_typemap};
in typemap.xsfor near the top ofvery .xspfile).

If you deal with ag other types as arguments or return types, you still need to writexBahdXS++
typemaps for these so that the systemswdmmw to deal with them.

See either'CustomXs typemaps’below for a way to specifXxs typemaps fronXS++ or perlxs for a
discussion of inlin&s typemaps that donhirequire the traditionas typemaile.

Custom XS typemaps
XS++ provides a default mapping for object types to@rOBJECTtypemap with standard input and
output glue code, which should be adequate for most uses.

There are multiple ways toverride this default when needed.

%typemap{Foo *}{simple}{
%xs_type{O_MYMAP};
%xs_input_code{% ... %}; // optional
%xs_output_code{% ... %}; // optional
2
can be used to define amnéype —>XS typemap mapping, with optinal input/output cod&@inceXs
typemap definitions are globals input/output code applies to all types with the s&es_type ,
hence there is no need to repeat it.

%typemap{ Hsimple}
%name{object};
%xs_type{O_MYMAP};
%xs_input_code{% ... %}; // optional
%xs_output_code{% ... %}; // optional
2
can be used to change the default typemap used for all classes.
DESCRIPTION
Anything that does not look l&kaXS++ directive a a dass declaration is passed verbatinXxgo If you
want XS++ to ignore code that looks BkaxS++ directive a class declaration, simply surround it with
a raw Hock delimiter like this:
9%{
XS++ won't interpret this
96}

%code
See undeflasses. Note that custon¥ecode blocks are the onlyxeeption to the exception handling.
By specifying a custorfiocode block, you forgo the automatic exception handlers.

Yofile
%file{file/path.h};

Y%file{file/path2};

%file{-}
By default XS++ output goes to standard output; to change this, uséofihe directive; use — for
standard output.

%module
%module{Module::Name};

Will be used to generate thMODULE=Module::Name XS directives. Itindirectly sets the name of
the shared library that is generated as well as the name of the module via which XSLoader will be able
to find/load it.

perl v5.24.1 2017-02-11 3


https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

fedora 26 man.m.sourcentral.org

ExtUtils::XSpp(3) UsecContributed Perl Documentation ExtUtils::XSpp(3)

%name
%name{Perl::Class} class MyClass { ... };
%name{Perl::Func} int foo();

Specifies the Perl name under which the dass/function will be accessible. By detft, constructor
names are mappediew in Perl.

%typemap
See “TYPEMAPS” abore.

%length
When you need to pass a string from Perl toxswB that takes the C string and its length as
arguments, you may kia XS++ pass the length of the string automaticalfgr example, if you declare
a method as follows,

void PrintLine( char* line, unsigned int %length{line} );
you can call the method from Perldikhis:
$object—>PrintLine( $string );
This feature is also present in plaig. See also: perlxs.

If you use%length(line) in conjunction with ap kind of special code block such &scode,
%postcall , ec., then you can refer to the length of the string (héirez ) efficiently as
length(line) in the code.

%alias

Decorator for function/method declarations such as

double add(double a, double b)
%alias{subtract = 1} %alias{multiply = 2};

Which will cause the generation of just a sing&UB using thexs “ALIAS” feature (see perlxs). It
will be installed as all oadd, subtract , and multiply  on the Perl side and call either the-C
add, subtract , or multiply  functions depending on which way it was called.

Notes: If used in conjunction witthname{foo} to rename the function, then tB&namewill only
affect the main function name (in the aboexample,add but not subtract  or multiply ). When
used with thécode feature, the custom code willleto use theix integer variable to decide which
function to call. ix is set to 0 for the main function. Malaire to read up on thelLIAS feature of
plain XS. Aliasing is not supported for constructors and destructors.

Classes
%name{My::Class} class MyClass : public %name{My::Base} MyBase
{
/I can be called in Perl as My::Class—>new( ... );
MyClass( int arg );
/I My::Class—>newMyClass( ... );
%name{newMyClass} MyClass( const char* str, int arg );

/I standard DESTROY method
“"MyClass();

int Getlnt();
void SetValue(intarg =-1);

%name{SetString} void SetValue( const char* string = NULL );

/I Supply a C<CODE:> or C<CLEANUP:> block for the XS
int MyMethod( int a, intb)

%code{% RETVAL = a + b; %]}

%cleanup{% /* do something */ %};

/I Expose class method as My::ClassMethod::ClassMethod($foo)
static void ClassMethod( double foo );

perl v5.24.1 2017-02-11 4


https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

fedora 26 man.m.sourcentral.org

ExtUtils::XSpp(3) UsecContributed Perl Documentation ExtUtils::XSpp(3)

/I Expose member variable as a pair of set_boolean/get_boolean accessors
bool boolean %get %set;
2
Comments
XS++recognizes both C-style commefits.. */ and G+style comment# ... . Comments
are remoed from theXs output.

Exceptions
C+ Exceptions are walays caught and transformed to Perbak() calls. If the exception thatas
caught inherited fronstd::exception , then thewhat() message is included in the Perde
error message. All other exceptions will result in theak() = message'Caught unhandled
C++ exception of unknown type"

Note that if you supply a custofbcode block for a function or method, the automatiception
handling is turned off.

Member variables
By default, member variable declarations are ignored%thet and %set decorators syntehsize a
getter/setter named after the member variable (can be renameé&oansing.

XS++ defaults to get_/set_ prefix for getters/setters. This canveeidden on an individual basis by
using e.g.

int foo %get{readFoo} %set{writeFoo};
As an alternatie, the class-leel %accessors decorator sets the the accessor style for the whole

class:

%accessors{
%get_style{no_prefix};
%set_style{camelcase};

%

Available styles are

no_prefix =>foo

underscore =get foo, set_foo
camelcase =getFoo, setFoo
uppercase =&etFoo, SetFoo

EXAMPLES
The distribution contains amxamples directory The examples/XSpp—Exampléirectory therein
demonstrates a particularly simple way of getting startedx@t.

AUTHOR
Mattia Barbon <mbarbon¥cpan DO org>

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

perl v5.24.1 2017-02-11 5


https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

