
ExtUtils::XSpp(3) UserContributed Perl Documentation ExtUtils::XSpp(3)

NAME
ExtUtils::XSpp − XS for C++

SYNOPSIS
xspp [−−typemap=typemap.xsp [−−typemap=typemap2.xsp]]

[−−xsubpp[=/path/to/xsubpp] [−−xsubpp−args="xsubpp args"]
Foo.xsp

or

perl −MExtUtils::XSpp::Cmd −e xspp −− <xspp options and arguments>

In Foo.xs

INCLUDE_COMMAND: $ˆX −MExtUtils::XSpp::Cmd −e xspp −− <xspp options/arguments>

Using ExtUtils::XSpp::Cmd is equivalent to using thexspp command line script, except that
there is no guarantee forxspp to be installed in the systemPATH.

OVERVIEW
XS++ is just a thin layer over plain XS, hence to use it you are supposed to know, at the very least, C++

andXS.

This means that you may need typemaps forboth the normalXS pre-processorxsubppand theXS++
pre-processorxspp. More on that in theTYPEMAPSsection below.

COMMAND LINE
−−typemap=/path/to/typemap.xsp

Can be specified multiple times to process additional typemap files before the mainXS++ input files.
Typemap files are processed the same way as regularXS++ files, except that output code is discarded.

−−xsubpp[=/path/to/xsubpp]
If specified,XS++ will run xsubppafter processing theXS++ input file. If the path toxsubppis not
specified,xsppexpects to find it in the systemPATH.

−−xsubpp−args=‘‘extra xsubpp args’’
Can be used to pass additional command line arguments toxsubpp.

TYPEMAPS
Ordinary XS typemaps

To recap,ordinary XS typemaps do the following three things:

• Associate a C type with an identifier such as T_FOO or O_FOO (which we’ll callXStypehere).

• Define anINPUT mapping for converting a Perl data structure to the aforementioned C type.

• Define anOUTPUTmapping for converting the C data structure back into a Perl data structure.

These are still required in the context ofXS++. There are some helpers to take away the tedium, but I’ll
get to that later. For XS++, there’s another layer of typemaps. The following section will discuss those.

XS++ typemaps
There is nothing special aboutXS++ typemap files (i.e. you can put typemaps directly in your.xspfile),
but it is handy to have common typemaps in a separate file, typically calledtypemap.xspto avoid
duplication.

%typemap{<C++ type>}{simple};

Just letXS++ know that this is a valid type, the type will be passed unchanged toXS codeexcept that
anyconst qualifiers will be stripped.

%typemap{<C++ reference type>}{reference};

Handle C++ references: theXS variable will be declared as a pointer, and it will be explicitly
dereferenced in the function call. If it is used in the return value, the function will createcopy of the
returned value using a copy constructor.

As a shortcut for the common case of declaring both of the above for a given type, you may use

%typemap{<C++ type>};

Which has the same effect as:

perl v5.24.1 2017-02-11 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

ExtUtils::XSpp(3) UserContributed Perl Documentation ExtUtils::XSpp(3)

%typemap{<C++ type>}{simple};
%typemap{<C++ type>&}{reference};

For more control over the type mapping, you can use theparsed variant as follows.

%typemap{<C++ type 1>}{parsed}{%<C++ type 2>%};

WhenC++ type 1 is used, replace it withC++ type 2 in the generatedXS code.

%typemap{<C++ type>}{parsed}{
%cpp_type{%<C++ type 2>%};
%call_function_code{% $CVar = new Foo($Call) %};
%cleanup_code{% ... %};
%precall_code{% ... %};

use only one of the following
%output_code{% $PerlVar = newSViv($CVar) %};
%output_list{% PUTBACK; XPUSHi($CVar); SPAGAIN %};

};

Is a more flexible form for theparsed typemap. Allthe parameters are optional.

cpp_type
Specifies the C++ type used for the variable declaration in the generatedXS code.

If not specified defaults to the type specified in the typemap.

call_function_code
Used when the typemap applies to the return value of the function.

Specifies the code to use in the function call.The special variables$Call and $CVar are
replaced with the actual call code and the name of the C++ return variable.

output_code
Used when the typemap applies to the return value of the function. See also%output_list .

Specifies the code emitted right after the function call to convert the C++ return value into a Perl
return value. Thespecial variable$CVar is replaced with the C++ return variable name.

cleanup_code
Used when the typemap applies to the return value of the function.

Specifies some code emitted after output value processing.The special variables$PerlVar and
$CVar are replaced with the names of the C++ variables containing the Perl scalar and the
corresponding C++value.

precall_code
Used when the typemap applies to a parameter.

Specifies some code emitted after argument processing and before calling the C++ method. The
special variables$PerlVar and $CVar are replaced with the names of the C++ variables
containing the Perl scalar and the corresponding C++value.

output_list
Used when the typemap applies to the return value of the function, as an alternative to
%output_code .

Specifies some code that manipulates the Perl stack directly in order to return a list. The special
variable$CVar is replaced with the C++name of the output variable.

The code must usePUTBACK/SPAGAIN if appropriate.

Putting all the typemaps together
In summary, the XS++ typemaps (optionally) give you much more control over the type conversion
code that’s generated for your XSUBs. But you still need to let theXS compiler know how to map the
C types to Perl and back using theXS typemaps.

Most of the time, you just need to convert basic C(++) types or the types that you define with your C++

classes. For the former, XS++ comes with a few default mappings for booleans, integers, floating point
numbers, and strings.For classes,XS++ can automatically create a mapping of typeO_OBJECTwhich

perl v5.24.1 2017-02-11 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

ExtUtils::XSpp(3) UserContributed Perl Documentation ExtUtils::XSpp(3)

uses the de-facto standard way of storing a pointer to the C(++) object in theIV slot of a
referenced/blessed scalar. Due to backwards compatibility, this must be explicitly enabled by adding

%loadplugin{feature::default_xs_typemap};

in typemap.xsp(or near the top of every .xspfile).

If you deal with any other types as arguments or return types, you still need to write bothXS andXS++
typemaps for these so that the systems know how to deal with them.

See either ‘‘CustomXS typemaps’’ below for a way to specifyXS typemaps fromXS++ or perlxs for a
discussion of inlineXS typemaps that don’t require the traditionalXS typemapfile.

Custom XS typemaps
XS++ provides a default mapping for object types to anO_OBJECTtypemap with standard input and
output glue code, which should be adequate for most uses.

There are multiple ways to override this default when needed.

%typemap{Foo *}{simple}{
%xs_type{O_MYMAP};
%xs_input_code{% ... %}; // optional
%xs_output_code{% ... %}; // optional

};

can be used to define a new type −>XS typemap mapping, with optinal input/output code.SinceXS
typemap definitions are global,XS input/output code applies to all types with the same%xs_type ,
hence there is no need to repeat it.

%typemap{_}{simple}{
%name{object};
%xs_type{O_MYMAP};
%xs_input_code{% ... %}; // optional
%xs_output_code{% ... %}; // optional

};

can be used to change the default typemap used for all classes.

DESCRIPTION
Anything that does not look like aXS++ directive or a class declaration is passed verbatim toXS. If you
want XS++ to ignore code that looks like aXS++ directive or class declaration, simply surround it with
a raw block delimiter like this:

%{
XS++ won't interpret this
%}

%code
See underClasses. Note that custom%code blocks are the only exception to the exception handling.
By specifying a custom%code block, you forgo the automatic exception handlers.

%file
%file{file/path.h};
...
%file{file/path2};
...
%file{−}

By default XS++ output goes to standard output; to change this, use the%file directive; use − for
standard output.

%module
%module{Module::Name};

Will be used to generate theMODULE=Module::Name XS directives. It indirectly sets the name of
the shared library that is generated as well as the name of the module via which XSLoader will be able
to find/load it.

perl v5.24.1 2017-02-11 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

ExtUtils::XSpp(3) UserContributed Perl Documentation ExtUtils::XSpp(3)

%name
%name{Perl::Class} class MyClass { ... };
%name{Perl::Func} int foo();

Specifies the Perl name under which the C++ class/function will be accessible. By default, constructor
names are mapped tonew in Perl.

%typemap
See ‘‘TYPEMAPS’’ above.

%length
When you need to pass a string from Perl to anXSUB that takes the C string and its length as
arguments, you may have XS++ pass the length of the string automatically. For example, if you declare
a method as follows,

void PrintLine(char* line, unsigned int %length{line});

you can call the method from Perl like this:

$object−>PrintLine($string);

This feature is also present in plainXS. See also: perlxs.

If you use%length(line) in conjunction with any kind of special code block such as%code,
%postcall , etc., then you can refer to the length of the string (here:line) efficiently as
length(line) in the code.

%alias
Decorator for function/method declarations such as

double add(double a, double b)
%alias{subtract = 1} %alias{multiply = 2};

Which will cause the generation of just a singleXSUB using theXS ‘‘A LIAS’’ feature (see perlxs). It
will be installed as all ofadd , subtract , and multiply on the Perl side and call either the C++

add , subtract , or multiply functions depending on which way it was called.

Notes: If used in conjunction with%name{foo} to rename the function, then the%namewill only
affect the main function name (in the above example,add but not subtract or multiply). When
used with the%code feature, the custom code will have to use theix integer variable to decide which
function to call. ix is set to 0 for the main function. Make sure to read up on theALIAS feature of
plain XS. Aliasing is not supported for constructors and destructors.

Classes
%name{My::Class} class MyClass : public %name{My::Base} MyBase
{

// can be called in Perl as My::Class−>new(...);
MyClass(int arg);
// My::Class−>newMyClass(...);
%name{newMyClass} MyClass(const char* str, int arg);

// standard DESTROY method
˜MyClass();

int GetInt();
void SetValue(int arg = −1);

%name{SetString} void SetValue(const char* string = NULL);

// Supply a C<CODE:> or C<CLEANUP:> block for the XS
int MyMethod(int a, int b)

%code{% RETVAL = a + b; %}
%cleanup{% /* do something */ %};

// Expose class method as My::ClassMethod::ClassMethod($foo)
static void ClassMethod(double foo);

perl v5.24.1 2017-02-11 4

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

ExtUtils::XSpp(3) UserContributed Perl Documentation ExtUtils::XSpp(3)

// Expose member variable as a pair of set_boolean/get_boolean accessors
bool boolean %get %set;

};

Comments
XS++ recognizes both C−style comments/* ... */ and C++−style comments// Comments
are removed from theXS output.

Exceptions
C++ Exceptions are always caught and transformed to Perlcroak() calls. If the exception that was
caught inherited fromstd::exception , then thewhat() message is included in the Perl-level
error message. All other exceptions will result in thecroak() message"Caught unhandled
C++ exception of unknown type" .

Note that if you supply a custom%code block for a function or method, the automatic exception
handling is turned off.

Member variables
By default, member variable declarations are ignored; the%get and %set decorators syntehsize a
getter/setter named after the member variable (can be renamed using%name).

XS++ defaults to get_/set_ prefix for getters/setters. This can be overridden on an individual basis by
using e.g.

int foo %get{readFoo} %set{writeFoo};

As an alternative, the class-level %accessors decorator sets the the accessor style for the whole
class:

%accessors{
%get_style{no_prefix};
%set_style{camelcase};

};

Av ailable styles are

no_prefix =>foo
underscore =>get_foo, set_foo
camelcase =>getFoo, setFoo
uppercase =>GetFoo, SetFoo

EXAMPLES
The distribution contains anexamples directory. The examples/XSpp−Exampledirectory therein
demonstrates a particularly simple way of getting started withXS++.

AUTHOR
Mattia Barbon <mbarbon AT cpan DOT org>

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

perl v5.24.1 2017-02-11 5

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+ExtUtils::XSpp

