
SELECT(2) LinuxProgrammer’s Manual SELECT(2)

NAME
select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO − synchronous I/O multiplexing

SYNOPSIS
/* According to POSIX.1-2001, POSIX.1-2008 */
#include <sys/select.h>

/* According to earlier standards */
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

void FD_CLR(int fd , fd_set *set);
int FD_ISSET(int fd , fd_set *set);
void FD_SET(int fd , fd_set *set);
void FD_ZERO(fd_set *set);

#include <sys/select.h>

int pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, const struct timespec *timeout,
const sigset_t *sigmask);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

pselect(): _POSIX_C_SOURCE >= 200112L

DESCRIPTION
select() andpselect() allow a program to monitor multiple file descriptors, waiting until one or more of
the file descriptors become "ready" for some class of I/O operation (e.g., input possible).A fi le
descriptor is considered ready if it is possible to perform a corresponding I/O operation (e.g.,read(2)
without blocking, or a sufficiently smallwrite(2)).

select() can monitor only file descriptors numbers that are less thanFD_SETSIZE; poll(2) does not
have this limitation. See BUGS.

The operation ofselect() andpselect() is identical, other than these three differences:

(i) select() uses a timeout that is astruct timeval (with seconds and microseconds), whilepse-
lect() uses astruct timespec (with seconds and nanoseconds).

(ii) select() may update thetimeout argument to indicate how much time was left.pselect() does
not change this argument.

(iii) select() has nosigmask argument, and behaves as pselect() called with NULLsigmask.

Three independent sets of file descriptors are watched. Thoselisted inreadfds will be watched to see if
characters become available for reading (more precisely, to see if a read will not block; in particular, a
file descriptor is also ready on end-of-file), those inwritefds will be watched to see if space is available
for write (though a large write may still block), and those inexceptfds will be watched for exceptions.
On exit, the sets are modified in place to indicate which file descriptors actually changed status.Each
of the three file descriptor sets may be specified as NULL if no file descriptors are to be watched for the
corresponding class of events.

Four macros are provided to manipulate the sets.FD_ZERO() clears a set.FD_SET() and
FD_CLR() respectively add and remove a giv en file descriptor from a set.FD_ISSET() tests to see if
a file descriptor is part of the set; this is useful afterselect() returns.

nfds is the highest-numbered file descriptor in any of the three sets, plus 1.

The timeout argument specifies the interval thatselect() should block waiting for a file descriptor to
become ready. The call will block until either:

Linux 2016-03-15 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+FD_ZERO


SELECT(2) LinuxProgrammer’s Manual SELECT(2)

* a file descriptor becomes ready;

* the call is interrupted by a signal handler; or

* the timeout expires.

Note that thetimeout interval will be rounded up to the system clock granularity, and kernel scheduling
delays mean that the blocking interval may overrun by a small amount. If both fields of thetimeval
structure are zero, thenselect() returns immediately. (This is useful for polling.)If timeout is NULL
(no timeout),select() can block indefinitely.

sigmask is a pointer to a signal mask (seesigprocmask(2)); if it is not NULL, thenpselect() first
replaces the current signal mask by the one pointed to bysigmask, then does the "select" function, and
then restores the original signal mask.

Other than the difference in the precision of thetimeout argument, the followingpselect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds,
timeout, &sigmask);

is equivalent toatomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The reason thatpselect() is needed is that if one wants to wait for either a signal or for a file descriptor
to become ready, then an atomic test is needed to prevent race conditions. (Suppose the signal handler
sets a global flag and returns. Then a test of this global flag followed by a call ofselect() could hang
indefinitely if the signal arrived just after the test but just before the call.By contrast,pselect() allows
one to first block signals, handle the signals that have come in, then callpselect() with the desiredsig-
mask, avoiding the race.)

The timeout
The time structures involved are defined in<sys/time.h> and look like

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

and

struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

(However, see below on the POSIX.1 versions.)

Some code callsselect() with all three sets empty, nfds zero, and a non-NULLtimeout as a fairly porta-
ble way to sleep with subsecond precision.

On Linux,select() modifiestimeout to reflect the amount of time not slept; most other implementations
do not do this. (POSIX.1 permits either behavior.) Thiscauses problems both when Linux code which
readstimeout is ported to other operating systems, and when code is ported to Linux that reuses a
struct timeval for multipleselect()s in a loop without reinitializing it.Considertimeout to be undefined
afterselect() returns.

RETURN VALUE
On success,select() andpselect() return the number of file descriptors contained in the three returned
descriptor sets (that is, the total number of bits that are set inreadfds, writefds, exceptfds) which may
be zero if the timeout expires before anything interesting happens. On error, −1 is returned, anderrno

Linux 2016-03-15 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+FD_ZERO


SELECT(2) LinuxProgrammer’s Manual SELECT(2)

is set to indicate the error; the file descriptor sets are unmodified, andtimeout becomes undefined.

ERRORS
EBADF

An invalid file descriptor was given in one of the sets. (Perhaps a file descriptor that was
already closed, or one on which an error has occurred.)

EINTR
A signal was caught; seesignal(7).

EINVAL
nfds is negative or exceeds theRLIMIT_NOFILE resource limit (seegetrlimit(2)).

EINVAL
The value contained withintimeout is invalid.

ENOMEM
Unable to allocate memory for internal tables.

VERSIONS
pselect() was added to Linux in kernel 2.6.16. Prior to this,pselect() was emulated in glibc (but see
BUGS).

CONFORMING TO
select() conforms to POSIX.1-2001, POSIX.1-2008, and 4.4BSD (select() first appeared in 4.2BSD).
Generally portable to/from non-BSD systems supporting clones of the BSD socket layer (including
System Vvariants). However, note that the SystemV variant typically sets the timeout variable before
exit, but the BSD variant does not.

pselect() is defined in POSIX.1g, and in POSIX.1-2001 and POSIX.1-2008.

NOTES
An fd_set is a fixed size buffer. ExecutingFD_CLR() or FD_SET() with a value offd that is negative
or is equal to or larger thanFD_SETSIZE will result in undefined behavior. Moreover, POSIX
requiresfd to be a valid file descriptor.

On some other UNIX systems,select() can fail with the errorEAGAIN if the system fails to allocate
kernel-internal resources, rather thanENOMEM as Linux does. POSIX specifies this error forpoll(2),
but not for select(). Portableprograms may wish to check forEAGAIN and loop, just as withEINTR.

Concerning the types involved, the classical situation is that the two fields of atimeval structure are
typed aslong (as shown above), and the structure is defined in<sys/time.h>. The POSIX.1 situation is

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /*microseconds */

};

where the structure is defined in<sys/select.h> and the data typestime_t andsuseconds_t are defined
in <sys/types.h>.

Concerning prototypes, the classical situation is that one should include<time.h> for select(). The
POSIX.1 situation is that one should include<sys/select.h> for select() andpselect().

Under glibc 2.0,<sys/select.h> gives the wrong prototype forpselect(). Underglibc 2.1 to 2.2.1, it
gives pselect() when_GNU_SOURCE is defined. Since glibc 2.2.2, the requirements are as shown in
the SYNOPSIS.

Multithreaded applications
If a file descriptor being monitored byselect() is closed in another thread, the result is unspecified.On
some UNIX systems,select() unblocks and returns, with an indication that the file descriptor is ready (a
subsequent I/O operation will likely fail with an error, unless another the file descriptor reopened
between the timeselect() returned and the I/O operations was performed). On Linux (and some other
systems), closing the file descriptor in another thread has no effect onselect(). In summary, any appli-
cation that relies on a particular behavior in this scenario must be considered buggy.

Linux 2016-03-15 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+FD_ZERO


SELECT(2) LinuxProgrammer’s Manual SELECT(2)

C library/kernel differences
The Linux kernel allows file descriptor sets of arbitrary size, determining the length of the sets to be
checked from the value ofnfds. Howev er, in the glibc implementation, thefd_set type is fixed in size.
See also BUGS.

The pselect() interface described in this page is implemented by glibc. The underlying Linux system
call is namedpselect6(). This system call has somewhat different behavior from the glibc wrapper
function.

The Linuxpselect6() system call modifies itstimeout argument. However, the glibc wrapper function
hides this behavior by using a local variable for the timeout argument that is passed to the system call.
Thus, the glibcpselect() function does not modify itstimeout argument; this is the behavior required
by POSIX.1-2001.

The final argument of thepselect6() system call is not asigset_t * pointer, but is instead a structure of
the form:

struct {
const sigset_t *ss; /* Pointer to signal set */
size_t ss_len;/* Size (in bytes) of object pointed

to by ’ss’ */
};

This allows the system call to obtain both a pointer to the signal set and its size, while allowing for the
fact that most architectures support a maximum of 6 arguments to a system call.

BUGS
POSIX allows an implementation to define an upper limit, advertised via the constantFD_SETSIZE,
on the range of file descriptors that can be specified in a file descriptor set.The Linux kernel imposes
no fixed limit, but the glibc implementation makesfd_set a fixed-size type, withFD_SETSIZE defined
as 1024, and theFD_*() macros operating according to that limit.To monitor file descriptors greater
than 1023, usepoll(2) instead.

Glibc 2.0 provided a version ofpselect() that did not take asigmask argument.

Starting with version 2.1, glibc provided an emulation ofpselect() that was implemented usingsig-
procmask(2) andselect(). This implementation remained vulnerable to the very race condition that
pselect() was designed to prevent. Modernversions of glibc use the (race-free)pselect() system call on
kernels where it is provided.

On systems that lackpselect(), reliable (and more portable) signal trapping can be achieved using the
self-pipe trick. In this technique, a signal handler writes a byte to a pipe whose other end is monitored
by select() in the main program.(To avoid possibly blocking when writing to a pipe that may be full or
reading from a pipe that may be empty, nonblocking I/O is used when reading from and writing to the
pipe.)

Under Linux,select() may report a socket file descriptor as "ready for reading", while nevertheless a
subsequent read blocks. This could for example happen when data has arrived but upon examination
has wrong checksum and is discarded.There may be other circumstances in which a file descriptor is
spuriously reported as ready. Thus it may be safer to useO_NONBLOCK on sockets that should not
block.

On Linux, select() also modifiestimeout if the call is interrupted by a signal handler (i.e., theEINTR
error return). This is not permitted by POSIX.1. The Linuxpselect() system call has the same behav-
ior, but the glibc wrapper hides this behavior by internally copying thetimeout to a local variable and
passing that variable to the system call.

EXAMPLE
#include <stdio.h>
#include <stdlib.h>

Linux 2016-03-15 4

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+FD_ZERO


SELECT(2) LinuxProgrammer’s Manual SELECT(2)

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

fd_set rfds;
struct timeval tv;
int retval;

/* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);
FD_SET(0, &rfds);

/* Wait up to five seconds. */

tv.tv_sec = 5;
tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);
/* Don’t rely on the value of tv now! */

if (retval == −1)
perror("select()");

else if (retval)
printf("Data is available now.\n");
/* FD_ISSET(0, &rfds) will be true. */

else
printf("No data within five seconds.\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), restart_syscall(2), send(2), sigprocmask(2),
write(2), epoll(7), time(7)

For a tutorial with discussion and examples, seeselect_tut(2).

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2016-03-15 5

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+FD_ZERO

