(=% =

fedora 26

man.m.sourcentral.org

SELECT(2) LinuxProgrammes Manual SELECT(2)

NAME

select, pselect, FD_CLR, FD_ISSED_SET FD_ZERO - synchronous I/O multiplexing

SYNOPSIS

/* According to POSIX.1-2001, POSIX.1-2008 */
#include <sys/select.h>

/* According to earlier standards */
#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

void FD_CLR(int fd, fd_set * set);
int FD_ISSET(int fd, fd_set *set);
void FD_SET(int fd, fd_set * set);

void FD_ZERO(fd_set * set);

#include <sys/select.h>
int pselect(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, const struct timespec * timeout,
const sigset_t *sigmask);

Feature Test Macro Requirements for glibc fsature test macros(7)):

pselect(): POSIX_C_SOURCE >=200112L

DESCRIPTION

Linux

select() andpselect() allow a program to monitor multiple file descriptors, waiting until one or more of
the file descriptors become "ready" for some class of I/O operation (e.g., input posaitfiés.
descriptor is considered ready if it is possible to perform a corresponding I/0O operatioreéd(@),
without blocking, or a sufficiently smalirite(2)).

select() can monitor only file descriptors numbers that are less RRarSET SIZE; poll(2) does not
have tis limitation. See BUGS.

The operation oelect() andpselect() is identical, other than these three differences:

@ select() uses a timeout that isstruct timeval (with seconds and microseconds), whpke-
lect() uses atruct timespec (with seconds and nanoseconds).

(i) select() may update th&meout argument to indicate o much time was left.pselect() does
not change this argument.

(iii) select() has nasigmask argument, and beties & pselect() called with NULLsigmask.

Three independent sets of file descriptors atcled. Thosésted inreadfds will be watched to see if
characters becomeailable for reading (more precisely e if a read will not block; in particulaa
file descriptor is also ready on end-of-file), thoseiiitefds will be watched to see if space isdable
for write (though a laye write may still block), and those éceptfds will be watched for xceptions.
On «it, the sets are modified in place to indicate which file descriptors actually changed Etatlus.
of the three file descriptor sets may be specified as NULL if no file descriptors aredtchedifor the
corresponding class ofents.

Four macros are provided to manipulate the séf® ZERO() clears a set.FD SET() and
FD_CLR() respectiely add and remee a gven file descriptor from a set-D_ISSET () tests to see if
a file descriptor is part of the set; this is useful afbct() returns.

nfds is the highest-numbered file descriptor iy ahthe three sets, plus 1.

The timeout argument specifies the intevthatselect() should block waiting for a file descriptor to
become readyThe call will block until either:

2016-03-15 1


https://man.m.sourcentral.org/f26/3+FD_ZERO

(=% =

fedora 26 man.m.sourcentral.org

SELECT(2) LinuxProgrammes Manual SELECT(2)

* afile descriptor becomes ready;
* the call is interrupted by a signal handler; or
* the timeout expires.

Note that the@imeout interval will be rounded up to the system clock granulaaty kernel scheduling
delays mean that the blocking interval masgroaun by a small amount. If both fields of thieneval
structure are zero, thesalect() returns immediately(This is useful for polling.)If timeout is NULL
(no timeout) select() can block indefinitely.

sigmask is a pointer to a signal mask (ssgprocmask(2)); if it is not NULL, thenpselect() first
replaces the current signal mask by the one pointed smimask, then does the "select" function, and
then restores the original signal mask.

Other than the difference in the precision oftih@out argument, the followingselect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds,
timeout, &sigmask);

is equialent toatomically executing the following calls:
sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The reason thaiselect() is needed is that if one wants taitwfor either a signal or for a file descriptor
to become readyhen an atomic test is needed tovent race conditions. (Suppose the signal handler
sets a global flag and returns. Then a test of this global flag followed by a sa#otf) could hang
indefinitely if the signal arvied just after the test but just before the c@l contrastpseect() allows

one to first block signals, handle the signals thaélame in, then calpselect() with the desiredig-
mask, avoiding the race.)

Thetimeout
The time structureswlved are defined irsys/time.h> and look like

struct timeval {
long tv_sec; [*seconds */
long tv_usec; /* microseconds */

g

and

struct timespec {
long tv_sec; [*seconds */
long tv_nsec; /* nanoseconds */

g

(However, se belav on the POSIX.1 versions.)

Some code callsglect() with all three sets emptyfds zero, and a non-NULkimeout as a fairly porta-
ble way to sleep with subsecond precision.

On Linux, select() modifiestimeout to reflect the amount of time not slept; most other implementations
do not do this. (POSIX.1 permits either belba) Thiscauses problems both when Linux code which
readstimeout is ported to other operating systems, and when code is ported to Linux that reuses a
struct timeval for multiple select()s in a loop without reinitializing itConsidertimeout to be undefined
afterselect() returns.

RETURN VALUE
On successselect() andpselect() return the number of file descriptors contained in the three returned
descriptor sets (that is, the total number of bits that are seadfds, writefds, exceptfds) which may
be zero if the timeout expires before anything interesting happens. On-drisneturned, anarrno

Linux 2016-03-15 2


https://man.m.sourcentral.org/f26/3+FD_ZERO

(=% =

fedora 26

man.m.sourcentral.org

SELECT(2) LinuxProgrammes Manual SELECT(2)

is set to indicate the error; the file descriptor sets are unmodifietingodt becomes undefined.

ERRORS
EBADF
An invalid file descriptor was gen in one of the sets. (Perhaps a file descriptor thag w
already closed, or one on which an error has occurred.)
EINTR
A signal was caught; sesggnal (7).
EINVAL
nfds is nagyative a exceeds th&LIMIT_NOFILE resource limit (segetrlimit(2)).
EINVAL
The value contained withitimeout is invalid.
ENOMEM
Unable to allocate memory for internal tables.
VERSIONS

pselect() was added to Linux in kernel 2.6.16. Prior to tipisglect() was emulated in glibc (but see
BUGS).

CONFORMING TO

select() conforms to POSIX.1-2001, POSIX.1-2008, and 4.4BSix¢t() first appeared in 4.2BSD).
Generally portable to/from non-BSD systems supporting clones of the BSD socket layer (including
System Wariants). Havever, note that the SysteM variant typically sets the timeout variable before
ext, but the BSD variant does not.

pselect() is defined in POSIX.1g, and in POSIX.1-2001 and POSIX.1-2008.

NOTES

An fd_set is a fixed size Wffer. ExecutingFD_CLR() or FD_SET () with a value offd that is ngaive
or is equal to or larger thaRD_SETSIZE will result in undefined bel&r. Moreoser, POSIX
requiresfd to be a valid file descriptor.

On some other UNIX systemsglect() can fail with the erroEAGAIN if the system fails to allocate
kernel-internal resources, rather tHeNOMEM as Linux does. POSIX specifies this errorgoH (2),
but not for select(). Portablgprograms may wish to check fBAGAIN and loop, just as witRINTR.

Concerning the types\nlved, the classical situation is that theotfields of atimeval structure are
typed adong (as shown aba), and the structure is defineddgystime.h>. The POSIX.1 situation is

struct timeal {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; microseconds */

g

where the structure is defined<sys/select.h> and the data typdsme t andsuseconds t are defined
in <systypes.h>.

Concerning prototypes, the classical situation is that one should inctideh> for select(). The
POSIX.1 situation is that one should includsys/select.h> for select() andpselect().

Under glibc 2.0<sys/select.h> gives the wrong prototype fopselect(). Underglibc 2.1 to 2.2.1, it
gives pselect() when_GNU_SOURCE is defined. Since glibc 2.2.2, the requirements are as shown in
the SYNOPSIS.

Multithreaded applications

Linux

If a file descriptor being monitored Isglect() is closed in another thread, the result is unspecifixd.
some UNIX systemselect() unblocks and returns, with an indication that the file descriptor is ready (a
subsequent I/O operation will &ky fail with an error unless another the file descriptor reopened
between the timeelect() returned and the I/O operations was performed). On Linux (and some other
systems), closing the file descriptor in another thread has no effediect). In summaryany gpli-

cation that relies on a particular behavior in this scenario must be considered buggy.

2016-03-15 3


https://man.m.sourcentral.org/f26/3+FD_ZERO

(=% =

fedora 26

man.m.sourcentral.org

SELECT(2) LinuxProgrammes Manual SELECT(2)

C library/kernd differences

BUGS

The Linux kernel allows file descriptor sets of arbitrary size, determining the length of the sets to be
checled from the alue ofnfds. Howeva, in the glibc implementation, thiel set type is fixed in size.
See also BUGS.

The pselect() interface described in this page is implemented by glibc. The underlying Linux system
call is namedpselect6(). This system call has somewhat different behavior from the glibc wrapper
function.

The Linuxpselect6() system call modifies itSmeout algument. Havever, the glibc wrapper function
hides this behavior by using a local variable for the timeauraent that is passed to the system call.
Thus, the glibgselect() function does not modify itimeout amgument; this is the behavior required
by POSIX.1-2001.

The final argument of thpselect6() system call is not sigset t* pointer but is instead a structure of
the form:

struct {
const sigset_t*ss; /* Pointer to signal set */
size t ss_len* Size (in bytes) of object pointed
to by 'ss’ */
h

This allows the system call to obtain both a pointer to the signal set and its size, whilegaito the
fact that most architectures support a maximum of 6 arguments to a system call.

POSIX allavs an implementation to define an upper limit, advertised via the coRR2aBET SIZE,
on the range of file descriptors that can be specified in a file descriptdthgeLinux kernel imposes
no fixed limit, but the glibc implementation mesd_set a fixed-size type, withFD_SET S| ZE defined
as 1024, and theD_*() macros operating according to that limito monitor file descriptors greater
than 1023, uspoll(2) instead.

Glibc 2.0 provided a version pielect() that did not ta& asigmask argument.

Starting with version 2.1, glibc provided an emulatiorpsdlect() that was implemented usirsig-
procmask(2) andselect(). Thisimplementation remained vulnerable to the very race condition that
pselect() was designed to prent. Modernversions of glibc use the (race-frgegelect() system call on
kernels where it is provided.

On systems that laghselect(), reliable (and more portable) signal trapping can be eshigsing the
self-pipe trick. In this technique, a signal handler writes a byte to a pipe whose other end is monitored
by select() in the main program(To avoid possibly blocking when writing to a pipe that may be full or
reading from a pipe that may be emptynblocking 1/O is used when reading from and writing to the

pipe.)

Under Linux,select() may report a socket file descriptor as "ready for reading”, whilertheless a
subsequent read blocks. This could for example happen when data et latriupon &amination

has wrong checksum and is discard&tiere may be other circumstances in which a file descriptor is
spuriously reported as readyhus it may be safer to u§& NONBLOCK on sockets that should not
block.

On Linux, select() also modifiegimeout if the call is interrupted by a signal handler (i.e., EHH&TR
error return). This is not permitted by POSIX.1. The Lipslect() system call has the same beha
ior, but the glibc wrapper hides this behavior by internally copyingitheout to a local variable and
passing that variable to the system call.

EXAMPLE

Linux

#include <stdio.h>
#include <stdlib.h>

2016-03-15 4


https://man.m.sourcentral.org/f26/3+FD_ZERO

(=% =

fedora 26 man.m.sourcentral.org

SELECT(2) LinuxProgrammes Manual SELECT(2)

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int

main(void)

{
fd_set rfds;
struct timeval tv;
int retval;

[* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);
FD_SET(0, &rfds);

[* Wait up to five econds. */

tv.tv_sec = 5;
tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);
/* Don't rely on the value of tv now! */

if (retval == -1)

perror(“select()");
else if (retval)

printf("Data is &ailable nav.\n");

/* FD_ISSET(0, &rfds) will be true. */
else

printf("No data within fie ssconds.\n");

exit(EXIT_SUCCESS);
}
SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), restart syscall(2), send(2), sigprocmask(2),
write(2), epoll(7), time(7)

For a tutorial with discussion and examples, sdect_tut(2).

COLOPHON
This page is part of release 4.09 of the Liman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the Ilatesersion of this page, can be found at
https://www.kernel.org/doc/man—pages/.

Linux 2016-03-15 5


https://man.m.sourcentral.org/f26/3+FD_ZERO

