
util_delay(3) avr-libc util_delay(3)

NAME
util_delay − <util/delay.h>: Convenience functions for busy-wait delay loops

Macros
#defineF_CPU 1000000UL

Functions
void _delay_ms(double __ms)
void _delay_us(double __us)

Detailed Description
#define F_CPU 1000000UL // 1 MHz
//#define F_CPU 14.7456E6
#include <util/delay.h>

Note:
As an alternative method, it is possible to pass the F_CPU macro down to the compiler from the
Makefile. Obviously, in that case, no#define statement should be used.

The functions in this header file are wrappers around the basic busy-wait functions from
<util/delay_basic.h>. They are meant as convenience functions where actual time values can be
specified rather than a number of cycles to wait for. The idea behind is that compile-time constant
expressions will be eliminated by compiler optimization so floating-point expressions can be used to
calculate the number of delay cycles needed based on the CPU frequency passed by the macro F_CPU.

Note:
In order for these functions to work as intended, compiler optimizationsmust be enabled, and the
delay timemust be an expression that is a known constant at compile-time. If these requirements
are not met, the resulting delay will be much longer (and basically unpredictable), and
applications that otherwise do not use floating-point calculations will experience severe code bloat
by the floating-point library routines linked into the application.

The functions available allow the specification of microsecond, and millisecond delays directly, using
the application-supplied macro F_CPU as the CPU clock frequency (in Hertz).

Macro Definition Documentation
#define F_CPU 1000000UL

CPU frequency in Hz. The macro F_CPU specifies the CPU frequency to be considered by the delay
macros. This macro is normally supplied by the environment (e.g. from within a project header, or the
project’s Makefile). The value 1 MHz here is only provided as a ’vanilla’ fallback if no such user-
provided definition could be found.

In terms of the delay functions, the CPU frequency can be given as a floating-point constant (e.g.
3.6864E6 for 3.6864 MHz). However, the macros in <util/setbaud.h> require it to be an integer value.

Function Documentation
void _delay_ms (double __ms)

Perform a delay of__ms milliseconds, using_delay_loop_2().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock frequency (in Hertz).

The maximal possible delay is 262.14 ms / F_CPU in MHz.

When the user request delay which exceed the maximum possible one,_delay_ms()provides a
decreased resolution functionality. In this mode_delay_ms()will work with a resolution of 1/10 ms,
providing delays up to 6.5535 seconds (independent from CPU frequency). The user will not be
informed about decreased resolution.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295 ms/ F_CPU in MHz. For values greater than the maximal possible delay, overflows
results in no delay i.e., 0ms.

Conversion of__ms into clock cycles may not always result in integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at least__ms microseconds of delay.

Alternatively, by defining the macro__DELAY_ROUND_DOWN__, or
__DELAY_ROUND_CLOSEST__, before including this header file, the algorithm can be made to

Version 2.0.0 Mon Feb 8 2016 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+F_CPU


util_delay(3) avr-libc util_delay(3)

round down, or round to closest integer, respectively.

Note:

The implementation of_delay_ms()based on __builtin_avr_delay_cycles() is not backward
compatible with older implementations. In order to get functionality backward compatible with
previous versions, the macro’__DELAY_BACKWARD_COMPATIBLE__’ must be defined before
including this header file. Also, the backward compatible algorithm will be chosen if the code is
compiled in afreestanding environment (GCC option-ffreestanding), as the math functions
required for rounding are not available to the compiler then.

void _delay_us (double __us)
Perform a delay of__us microseconds, using_delay_loop_1().

The macro F_CPU is supposed to be defined to a constant defining the CPU clock frequency (in Hertz).

The maximal possible delay is 768 us / F_CPU in MHz.

If the user requests a delay greater than the maximal possible one,_delay_us()will automatically call
_delay_ms()instead. The user will not be informed about this case.

If the avr-gcc toolchain has __builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295 us/ F_CPU in MHz. For values greater than the maximal possible delay, overflow results
in no delay i.e., 0us.

Conversion of__us into clock cycles may not always result in integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at least__us microseconds of delay.

Alternatively, by defining the macro__DELAY_ROUND_DOWN__, or
__DELAY_ROUND_CLOSEST__, before including this header file, the algorithm can be made to
round down, or round to closest integer, respectively.

Note:

The implementation of_delay_ms()based on __builtin_avr_delay_cycles() is not backward
compatible with older implementations. In order to get functionality backward compatible with
previous versions, the macro__DELAY_BACKWARD_COMPATIBLE__ must be defined before
including this header file. Also, the backward compatible algorithm will be chosen if the code is
compiled in afreestanding environment (GCC option-ffreestanding), as the math functions
required for rounding are not available to the compiler then.

Author
Generated automatically by Doxygen for avr-libc from the source code.

Version 2.0.0 Mon Feb 8 2016 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+F_CPU

