fedora 26 man.m.sourcentral.org

util_delay(3) ar-libc util_delay(3)
NAME
util_delay — <util/delay.h>: Corenience functions for busy-wait delay loops
Macros
#defineF_CPU 1000000UL
Functions

void _delay_ms(double __ms)
void _delay us(double __us)

Detailed Description
#define F_CPU 1000000UL // 1 MHz
/l#define F_CPU 14.7456E6
#include <util/delay.h>

Note:
As an alternatie method, it is possible to pass the F_CPU macro down to the compiler from the
Makefile. Obviouslyin that case, nédef i ne statement should be used.

The functions in this header file are wrappers around the basic busy-wait functions from
<util/delay_basic.h>. They are meant as cemnience functions where actual time values can be
specified rather than a number of cycles to wait for. The idea behind is that compile-time constant
expressions will be eliminated by compiler optimization so floating-point expressions can be used to
calculate the number of delay cycles needed based on the CPU frepassed by the macro F_CPU.

Note:
In order for these functions to work as intended, compiler optimizatiostsbe enabled, and the
delay timemust be an expression that is a known constant at compile-time. If these requirements
are not met, the resulting delay will be much longer (and basically unpredictable), and
applications that otherwise do not use floating-point calculations will experieree sede bloat
by the floating-point library routines linked into the application.

The functions aailable allow the specification of microsecond, and millisecond delays diresilyg
the application-supplied macro F_CPU as the CPU clock fregemElertz).

Macr o Definition Documentation
#define F_CPU 1000000UL
CPU frequengin Hz. The macro F_CPU specifies the CPU frequéntbe onsidered by the delay
macros. This macro is normally supplied by the environment (e.g. from within a project, loeduker
projects Makefile). The value 1 MHz here is only provided aganilla’ fallback if no such user-
provided definition could be found.

In terms of the delay functions, the CPU frequetan be gren as a fbating-point constant (e.g.
3.6864E6 for 3.6864 MHz). Hower, the macros in til/setbaud.h> require it to be an integer value.

Function Documentation
void _delay_ms (double __ms)
Perform a delay of ns milliseconds, usingdelay loop_2()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock yréquéerz).
The maximal possible delay is 262.14 ms / F_CPU in MHz.

When the user request delay which exceed the maximum possibledefes;, ms()provides a
decreased resolution functionality. In this modielay ms()will work with a resolution of 1/10 ms,
providing delays up to 6.5535 seconds (independent from CPU frequency). The user will not be
informed about decreased resolution.

If the avr-gcc toolchain has __ builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295 ms/ F_CPU in MHz. For values greater than the maximal possib]eadfiyws
results in no delay i.e., Oms.

Corversion of__ns into clock cycles may notwhbys result in integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at leasnicroseconds of delay.

Alternatively, by defining the macro DELAY ROUND _DOWN__, or
__ DELAY_ROUND CLOSEST__, before including this header file, the algorithm can be made to

Version 2.0.0 Mon Feb 8 2016 1


https://man.m.sourcentral.org/f26/3+F_CPU

fedora 26 man.m.sourcentral.org

util_delay(3) ar-libc util_delay(3)

round down, or round to closest integespectiely.
Note:

The implementation ofdelay_ms()based on __ builtin_avr_delay_cycles() is not backward
compatible with older implementations. In order to get functionality backward compatible with
previous versions, the macro DELAY BACKWARD COMPATI BLE ' must be defined before
including this header file. Also, the backward compatible algorithm will be chosen if the code is
compiled in dreestanding environment (GCC option- f f r eest andi ng), as the math functions
required for rounding are notalable to the compiler then.

void _delay_us (double __us)
Perform a delay of us microseconds, usingdelay loop_1()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock yréquéertz).
The maximal possible delay is 768 us / F_CPU in MHz.

If the user requests a delay greater than the maximal possibledetesy us()will automatically call
_delay_ms()instead. The user will not be informed about this case.

If the avr-gcc toolchain has __ builtin_avr_delay_cycles() support, maximal possible delay is
4294967.295 us/ F_CPU in MHz. For values greater than the maximal possibjewfiow results
in no delay i.e., Ous.

Corversion of__us into clock cycles may notwhbys result in integer. By default, the clock cycles
rounded up to next integer. This ensures that the user gets at laasnicroseconds of delay.

Alternatively, by defining the macro DELAY ROUND DOWN__, or
__ DELAY_ROUND CLOSEST__, before including this header file, the algorithm can be made to
round down, or round to closest integespectiely.

Note:

The implementation ofdelay_ms()based on __ builtin_avr_delay_cycles() is not backward
compatible with older implementations. In order to get functionality backward compatible with
previous versions, the macro DELAY BACKWARD COVPATI BLE __ must be defined before
including this header file. Also, the backward compatible algorithm will be chosen if the code is
compiled in dreestanding environment (GCC option- f f r eest andi ng), as the math functions
required for rounding are notalable to the compiler then.

Author
Generated automatically by Doxygen for avr-libc from the source code.

Version 2.0.0 Mon Feb 8 2016 2


https://man.m.sourcentral.org/f26/3+F_CPU

