catanh, catanhf, catanhl − complex arc tangents hyperbolic
#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);
Link with −lm.
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [−pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) − clog(1 − z))
These functions first appeared in glibc in version 2.1.
For an explanation of the terms used in this section, see attributes(7).
C99, POSIX.1-2001, POSIX.1-2008.
/* Link with "−lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) − clog(1 − z));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)
This page is part of release 4.09 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man−pages/.