
CreditDefaultSwap(3) QuantLib CreditDefaultSwap(3)

NAME
CreditDefaultSwap − Credit default swap.

SYNOPSIS
#include <ql/instruments/creditdefaultswap.hpp>

InheritsInstrument.

Public Member Functions
Constructors

CreditDefaultSwap (Protection::Side side,Real notional,Rate spread, constSchedule
&schedule,BusinessDayConvention paymentConvention, constDayCounter
&dayCounter, bool settlesAccrual=true, bool paysAtDefaultTime=true, constDate
&protectionStart=Date(), const boost::shared_ptr<Claim > &=boost::shared_ptr<
Claim >())
CDS quoted as running-spread only.

CreditDefaultSwap (Protection::Side side,Real notional,Rate upfront,Rate spread, const
Schedule &schedule,BusinessDayConvention paymentConvention, constDayCounter
&dayCounter, bool settlesAccrual=true, bool paysAtDefaultTime=true, constDate
&protectionStart=Date(), constDate &upfrontDate=Date(), const boost::shared_ptr<
Claim > &=boost::shared_ptr<Claim >())
CDS quoted as upfront and running spread.

Inspectors

Protection::Sideside () const
Real notional () const
Rate runningSpread () const
boost::optional<Rate > upfront () const
bool settlesAccrual () const
bool paysAtDefaultTime () const
constLeg & coupons () const
constDate & protectionStartDate () const

The first date for which defaults will trigger the contract.
constDate & protectionEndDate () const

The last date for which defaults will trigger the contract.

Results

Rate fairUpfront () const
Rate fairSpread () const
Real couponLegBPS () const
Real upfrontBPS () const
Real couponLegNPV () const
Real defaultLegNPV () const
Real upfrontNPV () const
Rate impliedHazardRate (Real targetNPV, constHandle< YieldTermStructure >

&discountCurve, constDayCounter &dayCounter,Real recoveryRate=0.4,Real
accuracy=1.0e−6) const
Implied hazard rate calculation.

Rate conventionalSpread (Real conventionalRecovery, constHandle< YieldTermStructure >
&discountCurve, constDayCounter &dayCounter) const
Conventional/standard upfront-to-spread conversion.

Protected Attributes
Protection::Sideside_
Real notional_
boost::optional<Rate > upfront_
Rate runningSpread_
bool settlesAccrual_

Version 1.10.1 Fri Sep 1 2017 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+fairUpfront_


CreditDefaultSwap(3) QuantLib CreditDefaultSwap(3)

bool paysAtDefaultTime_
boost::shared_ptr<Claim > claim_
Leg leg_
boost::shared_ptr<CashFlow > upfrontPayment_
Date protectionStart_
Rate fairUpfront_
Rate fairSpread_
Real couponLegBPS_
Real couponLegNPV_
Real upfrontBPS_
Real upfrontNPV_
Real defaultLegNPV_

Instrument interface
bool isExpired () const

returns whether the instrument might have value greater than zero.
void setupArguments (PricingEngine::arguments *) const
void fetchResults (const PricingEngine::results *) const
void setupExpired () const

Additional Inherited Members
Detailed Description

Credit default swap.

Note:
This instrument currently assumes that the issuer did not default until today’s date.

Warning
if Settings::includeReferenceDateCashFlows() is set totrue , payments
occurring at the settlement date of the swap might be included in the NPV and therefore affect the
fair-spread calculation. This might not be what you want.

Examples:
CDS.cpp.

Constructor & Destructor Documentation
CreditDefaultSwap (Protection::Side side, Real notional, Rate spread, const Schedule & schedule,

BusinessDayConvention paymentConvention, const DayCounter & dayCounter, bool
settlesAccrual = true , bool paysAtDefaultTime = true , const Date & protectionStart = Date() ,
const boost::shared_ptr< Claim > & = boost::shared_ptr< Claim >() )
CDS quoted as running-spread only.

Parameters:
side Whether the protection is bought or sold.
notional Notional value
spread Running spread in fractional units.
schedule Coupon schedule.
paymentConvention Business-day convention for payment-date adjustment.
dayCounter Day-count convention for accrual.
settlesAccrual Whether or not the accrued coupon is due in the event of a default.
paysAtDefaultTime If set to true, any payments triggered by a default event are due at default time.
If set to false, they are due at the end of the accrual period.
protectionStart The first date where a default event will trigger the contract.

CreditDefaultSwap (Protection::Side side, Real notional, Rate upfront, Rate spread, const Schedule &
schedule, BusinessDayConvention paymentConvention, const DayCounter & dayCounter, bool
settlesAccrual = true , bool paysAtDefaultTime = true , const Date & protectionStart = Date() ,
const Date & upfrontDate = Date() , const boost::shared_ptr< Claim > & =
boost::shared_ptr< Claim >() )
CDS quoted as upfront and running spread.

Parameters:

Version 1.10.1 Fri Sep 1 2017 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+fairUpfront_


CreditDefaultSwap(3) QuantLib CreditDefaultSwap(3)

side Whether the protection is bought or sold.
notional Notional value
upfront Upfront in fractional units.
spread Running spread in fractional units.
schedule Coupon schedule.
paymentConvention Business-day convention for payment-date adjustment.
dayCounter Day-count convention for accrual.
settlesAccrual Whether or not the accrued coupon is due in the event of a default.
paysAtDefaultTime If set to true, any payments triggered by a default event are due at default time.
If set to false, they are due at the end of the accrual period.
protectionStart The first date where a default event will trigger the contract.
upfrontDate Settlement date for the upfront payment.

Member Function Documentation
void setupArguments (PricingEngine::arguments *) const [virtual]

When a derived argument structure is defined for an instrument, this method should be overridden to
fill it. This is mandatory in case a pricing engine is used.

Reimplemented fromInstrument.

void fetchResults (const PricingEngine::results * r) const [virtual]
When a derived result structure is defined for an instrument, this method should be overridden to read
from it. This is mandatory in case a pricing engine is used.

Reimplemented fromInstrument.

Rate fairUpfront () const
Returns the upfront spread that, given the running spread and the quoted recovery rate, will make the
instrument have an NPV of 0.

Rate fairSpread () const
Returns the running spread that, given the quoted recovery rate, will make the running-only CDS have
an NPV of 0.

Note:
This calculation does not take any upfront into account, even if one was given.

Examples:
CDS.cpp.

Real couponLegBPS () const
Returns the variation of the fixed-leg value given a one-basis-point change in the running spread.

Rate impliedHazardRate (Real targetNPV, const Handle< YieldTermStructure > & discountCurve,
const DayCounter & dayCounter, Real recoveryRate = 0.4 , Real accuracy = 1.0e−6 ) const
Implied hazard rate calculation.

Note:
This method performs the calculation with the instrument characteristics. It will coincide with the
ISDA calculation if your object has the standard characteristics. Notably:

• The calendar should have no bank holidays, just weekends.

• The yield curve should be LIBOR piecewise constant in fwd rates, with a discount factor of 1
on the calculation date, which coincides with the trade date.

• Convention should be Following for yield curve and contract cashflows.

• The CDS should pay accrued and mature on standardIMM dates, settle on trade date +1 and
upfront settle on trade date +3.

Rate conventionalSpread (Real conventionalRecovery, const Handle< YieldTermStructure > &
discountCurve, const DayCounter & dayCounter) const
Conventional/standard upfront-to-spread conversion. Under a standard ISDA model and a set of
standardised instrument characteristics, it is the running only quoted spread that will make a CDS
contract have an NPV of 0 when quoted for that running only spread. Refer to: ’ISDA Standard CDS
converter specification.’ M ay 2009.

The conventional recovery rate to apply in the calculation is as specified by ISDA, not necessarily equal

Version 1.10.1 Fri Sep 1 2017 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+fairUpfront_


CreditDefaultSwap(3) QuantLib CreditDefaultSwap(3)

to the market-quoted one. It is typically 0.4 for SeniorSec and 0.2 for subordinate.

Note:
The conversion employs a flat hazard rate. As a result, you will not recover the market quotes.

This method performs the calculation with the instrument characteristics. It will coincide with the
ISDA calculation if your object has the standard characteristics. Notably:

• The calendar should have no bank holidays, just weekends.

• The yield curve should be LIBOR piecewise constant in fwd rates, with a discount factor of 1
on the calculation date, which coincides with the trade date.

• Convention should be Following for yield curve and contract cashflows.

• The CDS should pay accrued and mature on standardIMM dates, settle on trade date +1 and
upfront settle on trade date +3.

void setupExpired () const [protected] , [virtual]
This method must leave the instrument in a consistent state when the expiration condition is met.

Reimplemented fromInstrument.

Author
Generated automatically by Doxygen for QuantLib from the source code.

Version 1.10.1 Fri Sep 1 2017 4

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+fairUpfront_

