sourCEntral - mobile manpages

pdf

sspsv.f

NAME

sspsv.f −

SYNOPSIS

Functions/Subroutines

subroutine sspsv (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
SSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Function/Subroutine Documentation

subroutine sspsv (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, integer, dimension( * )IPIV, real, dimension( ldb, * )B, integerLDB, integerINFO)
SSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

SSPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix stored in packed format and X
and B are N-by-NRHS matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = ’U’, or
A = L * D * L**T, if UPLO = ’L’,
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is symmetric and block diagonal with 1-by-1
and 2-by-2 diagonal blocks. The factored form of A is then used to
solve the system of equations A * X = B.

Parameters:

UPLO

UPLO is CHARACTER*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.

N

N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

NRHS

NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

AP

AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = ’U’, AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = ’L’, AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.

On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
a packed triangular matrix in the same storage format as A.

IPIV

IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSPTRF. If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block. If UPLO = ’U’ and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = ’L’ and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.

B

B is REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

The packed storage scheme is illustrated by the following example
when N = 4, UPLO = ’U’:

Two-dimensional storage of the symmetric matrix A:

a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44

Packed storage of the upper triangle of A:

AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 163 of file sspsv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

pdf