ssytrd.f −
Functions/Subroutines
subroutine ssytrd (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
SSYTRD
subroutine ssytrd (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )D, real, dimension( * )E, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)
SSYTRD
Purpose:
SSYTRD reduces a real symmetric matrix A to real symmetric
tridiagonal form T by an orthogonal similarity transformation:
Q**T * A * Q = T.
Parameters:
UPLO
UPLO is CHARACTER*1
= ’U’: Upper triangle of A is stored;
= ’L’: Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = ’U’, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = ’U’, the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= ’L’, the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D
D is REAL array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E
E is REAL array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = ’U’, E(i) = A(i+1,i) if UPLO = ’L’.
TAU
TAU is REAL array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK. LWORK >= 1.
For optimum performance LWORK >= N*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
If UPLO = ’U’, the matrix Q is represented as a product of elementary
reflectors
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = ’L’, the matrix Q is represented as a product of elementary
reflectors
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = ’U’: if UPLO = ’L’:
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
Definition at line 193 of file ssytrd.f.
Generated automatically by Doxygen for LAPACK from the source code.