
PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

NAME
printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf − formatted output
conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE * stream, const char * format, ...);
int dprintf(int fd, const char * format, ...);
int sprintf(char * str, const char * format, ...);
int snprintf(char * str, size_t size, const char * format, ...);

#include <stdarg.h>

int vprintf(const char * format, va_list ap);
int vfprintf(FILE * stream, const char * format, va_list ap);
int vdprintf(int fd, const char * format, va_list ap);
int vsprintf(char * str, const char * format, va_list ap);
int vsnprintf(char * str, size_t size, const char * format, va_list ap);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

snprintf (), vsnprintf ():
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE ||

|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

dprintf (), vdprintf ():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The functions in theprintf () family produce output according to aformat as described below. The
functions printf () and vprintf () write output tostdout, the standard output stream;fprintf () and
vfprintf () write output to the given output stream; sprintf (), snprintf (), vsprintf () and vsnprintf ()
write to the character stringstr.

The functiondprintf () is the same asfprintf (3) except that it outputs to a file descriptor, fd, instead of
to astdiostream.

The functionssnprintf () andvsnprintf () write at mostsizebytes (including the terminating null byte
('\0')) tostr.

The functionsvprintf (), vfprintf (), vdprintf (), vsprintf (), vsnprintf () are equivalent to the functions
printf (), fprintf (), dprintf (), sprintf (), snprintf (), respectively, except that they are called with a
va_list instead of a variable number of arguments. Thesefunctions do not call theva_endmacro.
Because they inv oke theva_argmacro, the value ofap is undefined after the call. Seestdarg(3).

All of these functions write the output under the control of aformat string that specifies how subse-
quent arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are
converted for output.

C99 and POSIX.1-2001 specify that the results are undefined if a call tosprintf (), snprintf (),
vsprintf (), or vsnprintf () would cause copying to take place between objects that overlap (e.g., if the
target string array and one of the supplied input arguments refer to the same buffer). SeeNOTES.

GNU 2016-12-12 1

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not%), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching zero or
more subsequent arguments. Eachconversion specification is introduced by the character% , and ends
with a conversion specifier. In between there may be (in this order) zero or moreflags, an optional
minimumfield width, an optional precisionand an optionallength modifier.

The arguments must correspond properly (after type promotion) with the conversion specifier. By
default, the arguments are used in the order given, where each '*' (seeField widthandPrecisionbelow)
and each conversion specifier asks for the next argument (and it is an error if insufficiently many argu-
ments are given). Onecan also specify explicitly which argument is taken, at each place where an
argument is required, by writing "%m$" instead of '%' and "*m$" instead of '*', where the decimal inte-
germ denotes the position in the argument list of the desired argument, indexed starting from 1. Thus,

printf("%*d", width, num);

and

printf("%2$*1$d", width, num);

are equivalent. Thesecond style allows repeated references to the same argument. TheC99 standard
does not include the style using '$', which comes from the Single UNIX Specification.If the style
using '$' is used, it must be used throughout for all conversions taking an argument and all width and
precision arguments, but it may be mixed with "%%" formats, which do not consume an argument.
There may be no gaps in the numbers of arguments specified using '$'; for example, if arguments 1 and
3 are specified, argument 2 must also be specified somewhere in the format string.

For some numeric conversions a radix character ("decimal point") or thousands’ grouping character is
used. Theactual character used depends on theLC_NUMERIC part of the locale. The POSIX locale
uses '.' as radix character, and does not have a grouping character. Thus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in
"1.234.567,89" in the da_DK locale.

Flag characters
The character % is followed by zero or more of the following flags:

The value should be converted to an "alternate form".For o conversions, the first character of
the output string is made zero (by prefixing a 0 if it was not zero already).For x andX con-
versions, a nonzero result has the string "0x" (or "0X" forX conversions) prepended to it.For
a, A, e, E, f, F, g, and G conversions, the result will always contain a decimal point, even if no
digits follow it (normally, a decimal point appears in the results of those conversions only if a
digit follows). For g andG conversions, trailing zeros are not removed from the result as they
would otherwise be.For other conversions, the result is undefined.

0 The value should be zero padded.For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions,
the converted value is padded on the left with zeros rather than blanks. If the0 and− flags
both appear, the0 flag is ignored. If a precision is given with a numeric conversion (d, i, o, u,
x, andX), the0 flag is ignored.For other conversions, the behavior is undefined.

− The converted value is to be left adjusted on the field boundary. (The default is right justifica-
tion.) Theconverted value is padded on the right with blanks, rather than on the left with
blanks or zeros. A− overrides a0 if both are given.

' ' (a space) A blank should be left before a positive number (or empty string) produced by a
signed conversion.

+ A sign (+ or −) should always be placed before a number produced by a signed conversion.
By default, a sign is used only for negative numbers. A+ overrides a space if both are used.

GNU 2016-12-12 2

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

The five flag characters above are defined in the C99 standard. The Single UNIX Specification speci-
fies one further flag character.

' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thousands’ group-
ing characters if the locale information indicates any. Note that many versions ofgcc(1) can-
not parse this option and will issue a warning. (SUSv2did not include%'F, but SUSv3 added
it.)

glibc 2.2 adds one further flag character.

I For decimal integer conversion (i, d, u) the output uses the locale’s alternative output digits, if
any. For example, since glibc 2.2.3 this will give Arabic-Indic digits in the Persian ("fa_IR")
locale.

Field width
An optional decimal digit string (with nonzero first digit) specifying a minimum field width.If the
converted value has fewer characters than the field width, it will be padded with spaces on the left (or
right, if the left-adjustment flag has been given). Insteadof a decimal digit string one may write "*" or
"*m$" (for some decimal integerm) to specify that the field width is given in the next argument, or in
them-th argument, respectively, which must be of typeint. A negative field width is taken as a '−' flag
followed by a positive field width. In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

Precision
An optional precision, in the form of a period ('.')followed by an optional decimal digit string.Instead
of a decimal digit string one may write "*" or "*m$" (for some decimal integer m) to specify that the
precision is given in the next argument, or in them-th argument, respectively, which must be of type
int. If the precision is given as just '.', the precision is taken to be zero.A neg ative precision is taken as
if the precision were omitted. This gives the minimum number of digits to appear ford, i, o, u, x, and
X conversions, the number of digits to appear after the radix character fora, A, e, E, f, and F conver-
sions, the maximum number of significant digits forg andG conversions, or the maximum number of
characters to be printed from a string fors andS conversions.

Length modifier
Here, "integer conversion" stands ford, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to asigned char or unsigned char argument, or a
following n conversion corresponds to a pointer to asigned charargument.

h A following integer conversion corresponds to ashort int or unsigned short intargument, or a
following n conversion corresponds to a pointer to ashort intargument.

l (ell) A following integer conversion corresponds to along int or unsigned long intargument,
or a following n conversion corresponds to a pointer to along int argument, or a following c
conversion corresponds to awint_t argument, or a following s conversion corresponds to a
pointer towchar_targument.

ll (ell-ell). A following integer conversion corresponds to along long intor unsigned long long
int argument, or a following n conversion corresponds to a pointer to along long int argu-
ment.

L A following a, A, e, E, f, F, g, or G conversion corresponds to along doubleargument. (C99
allows %LF, but SUSv2 does not.) This is a synonym forll .

j A following integer conversion corresponds to anintmax_tor uintmax_targument, or a fol-
lowing n conversion corresponds to a pointer to anintmax_targument.

z A following integer conversion corresponds to asize_tor ssize_targument, or a following n
conversion corresponds to a pointer to asize_targument.

t A following integer conversion corresponds to aptrdiff_t argument, or a following n conver-
sion corresponds to a pointer to aptrdiff_t argument.

SUSv3 specifies all of the above. SUSv2 specified only the length modifiersh (in hd, hi, ho, hx, hX,
hn) and l (in ld, li , lo, lx, lX , ln, lc, ls) andL (in Le, LE , Lf , Lg, LG).

GNU 2016-12-12 3

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

Conversion specifiers
A character that specifies the type of conversion to be applied. The conversion specifiers and their
meanings are:

d, i The int argument is converted to signed decimal notation. The precision, if any, giv es the
minimum number of digits that must appear; if the converted value requires fewer digits, it is
padded on the left with zeros. The default precision is 1. When 0 is printed with an explicit
precision 0, the output is empty.

o, u, x, X
The unsigned intargument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal (x andX) notation. Thelettersabcdef are used forx conversions; the
lettersABCDEF are used forX conversions. Theprecision, if any, giv es the minimum num-
ber of digits that must appear; if the converted value requires fewer digits, it is padded on the
left with zeros. The default precision is 1.When 0 is printed with an explicit precision 0, the
output is empty.

e, E The doubleargument is rounded and converted in the style [−]d.ddde±dd where there is one
digit before the decimal-point character and the number of digits after it is equal to the preci-
sion; if the precision is missing, it is taken as 6; if the precision is zero, no decimal-point char-
acter appears.An E conversion uses the letterE (rather thane) to introduce the exponent.
The exponent always contains at least two digits; if the value is zero, the exponent is 00.

f, F The doubleargument is rounded and converted to decimal notation in the style [−]ddd.ddd,
where the number of digits after the decimal-point character is equal to the precision specifica-
tion. If the precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal-
point character appears. If a decimal point appears, at least one digit appears before it.

(SUSv2 does not know about F and says that character string representations for infinity and
NaN may be made available. SUSv3adds a specification forF. The C99 standard specifies
"[−]inf" or "[−]infinity" for infinity , and a string starting with "nan" for NaN, in the case off
conversion, and "[−]INF" or "[−]INFINITY" or "NAN" in the case ofF conversion.)

g, G The doubleargument is converted in stylef or e (or F or E for G conversions). Theprecision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if the
precision is zero, it is treated as 1.Style e is used if the exponent from its conversion is less
than −4 or greater than or equal to the precision.Trailing zeros are removed from the frac-
tional part of the result; a decimal point appears only if it is followed by at least one digit.

a, A (C99; not in SUSv2, but added in SUSv3) For a conversion, thedoubleargument is converted
to hexadecimal notation (using the letters abcdef) in the style [−]0xh.hhhhp±; for A conver-
sion the prefix0X, the letters ABCDEF, and the exponent separatorP is used. There is one
hexadecimal digit before the decimal point, and the number of digits after it is equal to the
precision. Thedefault precision suffices for an exact representation of the value if an exact
representation in base 2 exists and otherwise is sufficiently large to distinguish values of type
double. The digit before the decimal point is unspecified for nonnormalized numbers, and
nonzero but otherwise unspecified for normalized numbers.

c If no l modifier is present, theint argument is converted to anunsigned char, and the resulting
character is written. If anl modifier is present, thewint_t (wide character) argument is con-
verted to a multibyte sequence by a call to thewcrtomb(3) function, with a conversion state
starting in the initial state, and the resulting multibyte string is written.

s If no l modifier is present: theconst char * argument is expected to be a pointer to an array of
character type (pointer to a string). Characters from the array are written up to (but not includ-
ing) a terminating null byte ('\0'); if a precision is specified, no more than the number specified
are written. If a precision is given, no null byte need be present; if the precision is not speci-
fied, or is greater than the size of the array, the array must contain a terminating null byte.

If an l modifier is present: theconst wchar_t * argument is expected to be a pointer to an array
of wide characters.Wide characters from the array are converted to multibyte characters (each
by a call to thewcrtomb(3) function, with a conversion state starting in the initial state before
the first wide character), up to and including a terminating null wide character. The resulting

GNU 2016-12-12 4

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

multibyte characters are written up to (but not including) the terminating null byte. If a preci-
sion is specified, no more bytes than the number specified are written, but no partial multibyte
characters are written. Note that the precision determines the number ofbyteswritten, not the
number ofwide charactersor screen positions. The array must contain a terminating null
wide character, unless a precision is given and it is so small that the number of bytes written
exceeds it before the end of the array is reached.

C (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym forlc. Don’t use.

S (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym forls. Don’t use.

p Thevoid * pointer argument is printed in hexadecimal (as if by%#x or %#lx).

n The number of characters written so far is stored into the integer pointed to by the correspond-
ing argument. Thatargument shall be anint * , or variant whose size matches the (optionally)
supplied integer length modifier. No argument is converted. (Thisspecifier is not supported
by the bionic C library.) The behavior is undefined if the conversion specification includes
any flags, a field width, or a precision.

m (Glibc extension; supported by uClibc and musl.) Print output ofstrerror(errno). No argu-
ment is required.

% A '%' is written. No argument is converted. Thecomplete conversion specification is '%%'.

RETURN VALUE
Upon successful return, these functions return the number of characters printed (excluding the null byte
used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thansizebytes (including the terminating
null byte ('\0')). If the output was truncated due to this limit, then the return value is the number of
characters (excluding the terminating null byte) which would have been written to the final string if
enough space had been available. Thus,a return value ofsizeor more means that the output was trun-
cated. (Seealso below under NOTES.)

If an output error is encountered, a negative value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, seeattributes(7).

Interface Attrib ute Value
Thread safety MT-Safe localeprintf (), fprintf (),

sprintf (), snprintf (),
vprintf (), vfprintf (),
vsprintf (), vsnprintf ()

CONFORMING TO
fprintf (), printf (), sprintf (), vprintf (), vfprintf (), vsprintf (): POSIX.1-2001, POSIX.1-2008, C89,
C99.

snprintf (), vsnprintf (): POSIX.1-2001, POSIX.1-2008, C99.

Thedprintf () andvdprintf () functions were originally GNU extensions that were later standardized in
POSIX.1-2008.

Concerning the return value ofsnprintf (), SUSv2 and C99 contradict each other: whensnprintf () is
called withsize=0 then SUSv2 stipulates an unspecified return value less than 1, while C99 allows str
to be NULL in this case, and gives the return value (as always) as the number of characters that would
have been written in case the output string has been large enough. POSIX.1-2001 and later align their
specification ofsnprintf () with C99.

glibc 2.1 adds length modifiershh, j , t, andz and conversion charactersa andA.

glibc 2.2 adds the conversion characterF with C99 semantics, and the flag characterI .

GNU 2016-12-12 5

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

NOTES
Some programs imprudently rely on code such as the following

sprintf(buf, "%s some further text", buf);

to append text tobuf . Howev er, the standards explicitly note that the results are undefined if source
and destination buffers overlap when callingsprintf (), snprintf (), vsprintf (), and vsnprintf ().
Depending on the version ofgcc(1) used, and the compiler options employed, calls such as the above
will not produce the expected results.

The glibc implementation of the functionssnprintf () andvsnprintf () conforms to the C99 standard,
that is, behaves as described above, since glibc version 2.1.Until glibc 2.0.6, they would return −1
when the output was truncated.

BUGS
Becausesprintf () andvsprintf () assume an arbitrarily long string, callers must be careful not to over-
flow the actual space; this is often impossible to assure.Note that the length of the strings produced is
locale-dependent and difficult to predict.Usesnprintf () andvsnprintf () instead (orasprintf (3) and
vasprintf (3)).

Code such asprintf(foo); often indicates a bug, sincefoo may contain a % character. If foo comes
from untrusted user input, it may contain%n , causing theprintf () call to write to memory and creating
a security hole.

EXAMPLE
To print Pi to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To print a date and time in the form "Sunday, July 3, 10:02", whereweekdayandmonthare pointers to
strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

Many countries use the day-month-year order. Hence, an internationalized version must be able to
print the arguments in an order specified by the format:

#include <stdio.h>
fprintf(stdout, format,

weekday, month, day, hour, min);

where format depends on locale, and may permute the arguments. With the value:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

one might obtain "Sonntag, 3. Juli, 10:02".

To allocate a sufficiently large string and print into it (code correct for both glibc 2.0 and glibc 2.1):

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

char *
make_message(const char *fmt, ...)
{

int size = 0;
char *p = NULL;

GNU 2016-12-12 6

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

va_list ap;

/* Determine required size */

va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
va_end(ap);

if (size < 0)
return NULL;

size++; /*For ’ \0’ */
p = malloc(size);
if (p == NULL)

return NULL;

va_start(ap, fmt);
size = vsnprintf(p, size, fmt, ap);
if (size < 0) {

free(p);
return NULL;

}
va_end(ap);

return p;
}

If truncation occurs in glibc versions prior to 2.0.6, this is treated as an error instead of being handled
gracefully.

SEE ALSO
printf (1), asprintf (3), dprintf (3), puts(3), scanf(3), setlocale(3), strfromd (3), wcrtomb(3),
wprintf (3), locale(5)

COLOPHON
This page is part of release 4.09 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

GNU 2016-12-12 7

man.m.sourcentral.orgfedora 26

https://man.m.sourcentral.org/f26/3+vsnprintf

