sourCEntral - mobile manpages




glFeedbackBuffer − controls feedback mode


void glFeedbackBuffer( GLsizei size,

GLenum type,

GLfloat *buffer )



Specifies the maximum number of values that can be written into buffer.


Specifies a symbolic constant that describes the information that will be returned for each vertex. GL_2D, GL_3D, GL_3D_COLOR, GL_3D_COLOR_TEXTURE, and GL_4D_COLOR_TEXTURE are accepted.


Returns the feedback data.


The glFeedbackBuffer function controls feedback. Feedback, like selection, is a GL mode. The mode is selected by calling glRenderMode with GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization. Instead, information about primitives that would have been rasterized is fed back to the application using the GL.

glFeedbackBuffer has three arguments: buffer is a pointer to an array of floating-point values into which feedback information is placed. size indicates the size of the array. type is a symbolic constant describing the information that is fed back for each vertex. glFeedbackBuffer must be issued before feedback mode is enabled (by calling glRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK without establishing the feedback buffer, or calling glFeedbackBuffer while the GL is in feedback mode, is an error.

When glRenderMode is called while in feedback mode, it returns the number of entries placed in the feedback array, and resets the feedback array pointer to the base of the feedback buffer. The returned value never exceeds size. If the feedback data required more room than was available in buffer, glRenderMode returns a negative value. To take the GL out of feedback mode, call glRenderMode with a parameter value other than GL_FEEDBACK.

While in feedback mode, each primitive, bitmap, or pixel rectangle that would be rasterized generates a block of values that are copied into the feedback array. If doing so would cause the number of entries to exceed the maximum, the block is partially written so as to fill the array (if there is any room left at all), and an overflow flag is set. Each block begins with a code indicating the primitive type, followed by values that describe the primitive’s vertices and associated data. Entries are also written for bitmaps and pixel rectangles. Feedback occurs after polygon culling and glPolygonMode interpretation of polygons has taken place, so polygons that are culled are not returned in the feedback buffer. It can also occur after polygons with more than three edges are broken up into triangles, if the GL implementation renders polygons by performing this decomposition.

The glPassThrough command can be used to insert a marker into the feedback buffer. See glPassThrough.

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive is indicated with a unique identifying value followed by some number of vertices. Polygon entries include an integer value indicating how many vertices follow. A vertex is fed back as some number of floating-point values, as determined by type. Colors are fed back as four values in RGBA mode and one value in color index mode.

feedbackList ← feedbackItem feedbackList | feedbackItem

feedbackItem ← point | lineSegment | polygon | bitmap | pixelRectangle | passThru

point ← GL_POINT_TOKEN vertex

lineSegment ← GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex

polygon ← GL_POLYGON_TOKEN n polySpec

polySpec ← polySpec vertex | vertex vertex vertex

bitmap ← GL_BITMAP_TOKEN vertex

pixelRectangle ← GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex

passThru ← GL_PASS_THROUGH_TOKEN value

vertex ← 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

2d ← value value

3d ← value value value

3dColor ← value value value color

3dColorTexture ← value value value color tex

4dColorTexture ← value value value value color tex

color ← rgba | index

rgba ← value value value value

index ← value

tex ← value value value value

value is a floating-point number, and n is a floating-point integer giving the number of vertices in the polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN, GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN and GL_PASS_THROUGH_TOKEN are symbolic floating-point constants. GL_LINE_RESET_TOKEN is returned whenever the line stipple pattern is reset. The data returned as a vertex depends on the feedback type.

The following table gives the correspondence between type and the number of values per vertex. k is 1 in color index mode and 4 in RGBA mode.


Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates. Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if texture coordinate generation is enabled. They are always transformed by the texture matrix.


glFeedbackBuffer, when used in a display list, is not compiled into the display list but is executed immediately.

When the GL_ARB_multitexture extension is supported, glFeedbackBuffer returns only the texture coordinates of texture unit GL_TEXTURE0_ARB.


GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is called while the render mode is GL_FEEDBACK, or if glRenderMode is called with argument GL_FEEDBACK before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION is generated if glFeedbackBuffer is executed between the execution of glBegin and the corresponding execution of glEnd.


glGet with argument GL_RENDER_MODE


glBegin(3G), glLineStipple(3G), glPassThrough(3G), glPolygonMode(3G), glRenderMode(3G), glSelectBuffer(3G)