
MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

NAME
MP3::Tag::ID3v2 − Read / Write ID3v2.x.y tags from mp3 audio files

SYNOPSIS
MP3::Tag::ID3v2 supports
* Reading of ID3v2.2.0 and ID3v2.3.0 tags (some ID3v2.4.0 frames too)
* Writing of ID3v2.3.0 tags

MP3::Tag::ID3v2 is designed to be called from the MP3::Tag module. If you want to make calls from
user code, please consider using highest-level wrapper code in MP3::Tag, such asupdate_tags()and
select_id3v2_frame_by_descr().

Low-level creation code:

use MP3::Tag;
$mp3 = MP3::Tag−>new($filename);

r ead an existing tag
$mp3−>get_tags();
$id3v2 = $mp3−>{ID3v2} if exists $mp3−>{ID3v2};

or c reate a new tag
$id3v2 = $mp3−>new_tag("ID3v2");

See MP3::Tag for information on the above used functions.

* Reading a tag, very low-level:

$frameIDs_hash = $id3v2−>get_frame_ids('truename');

foreach my $frame (keys %$frameIDs_hash) {
my ($name, @info) = $id3v2−>get_frames($frame);
for my $info (@info) {

if (ref $info) {
print "$name ($frame):\n";
while(my ($key,$val)=each %$info) {

print " * $key => $val\n";
}

} e lse {
print "$name: $info\n";

}
}

}

* A dding / Changing / Removing a frame in memory (higher-level)

$t = $id3v2−>frame_select("TIT2", undef, undef); # Very flexible

$c = $id3v2−>frame_select_by_descr("COMM(fre,fra,eng,#0)[]");
$t = $id3v2−>frame_select_by_descr("TIT2");

$id3v2−>frame_select_by_descr("TIT2", "MyT"); # Set/Change
$id3v2−>frame_select_by_descr("RBUF", $n1, $n2, $n3); # Set/Change
$id3v2−>frame_select_by_descr("RBUF", "$n1;$n2;$n3"); # Set/Change
$id3v2−>frame_select_by_descr("TIT2", undef); # Remove

* A dding / Changing / Removing a frame in memory (low-level)

$id3v2−>add_frame("TIT2", "Title of the audio");
$id3v2−>change_frame("TALB","Greatest Album");
$id3v2−>remove_frame("TLAN");

* Output the modified-in-memory version of the tag:

$id3v2−>write_tag();

* Removing the whole tag from the file

perl v5.10.1 2010-01-18 1

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

$id3v2−>remove_tag();

* Get information about supported frames

%tags = $id3v2−>supported_frames();
while (($fname, $longname) = each %tags) {

print "$fname $longname: ",
join(", ", @{$id3v2−>what_data($fname)}), "\n";

}

AUTHOR
Thomas Geffert, thg AT users DOT sourceforge DOT net Ilya Zakharevich, ilyaz AT cpan DOT org

DESCRIPTION
get_frame_ids()

$frameIDs = $tag−>get_frame_ids;
$frameIDs = $tag−>get_frame_ids('truename');

[old name: getFrameIDs() . The old name is still available, but you should use the new name]

get_frame_ids loops through all frames, which exist in the tag. It returns a hash reference with a
list of all available Frame IDs. The keys of the returned hash are 4−character−codes (short names),
the internal names of the frames, the according value is the english (long) name of the frame.

You can use this list to iterate over all frames to get their data, or to check if a specific frame is
included in the tag.

If there are multiple occurences of a frame in one tag, the first frame is returned with its normal
short name, following frames of this type get a ’01’, ’02’, ’03’, ... appended to this name.These
names can then used withget_frame to get the information of these frames. These fake frames
are not returned if'truename' argument is set; one can still useget_frames() to extract
the info for all of the frames with the given short name.

get_frame()
($info, $name, @rest) = $tag−>get_frame($ID);
($info, $name, @rest) = $tag−>get_frame($ID, 'raw');

[old name: getFrame() . The old name is still available, but you should use the new name]

get_frame gets the contents of a specific frame, which must be specified by the 4−character−ID
(aka short name). You can useget_frame_ids to get the IDs of the tag, or use IDs which you
hope to find in the tag. If theID is not found,get_frame returns empty list, so$info and
$name become undefined.

Otherwise it extracts the contents of the frame. Frames in ID3v2 tags can be very small, or
complex and huge. That is the reason, thatget_frame returns the frame data in two ways,
depending on the tag.

If it is a simple tag, with only one piece of data, these data is returned directly as ($info,$name),
where$info is the text string, and$name is the long (english) name of the frame.

If the frame consist of different pieces of data,$info is a hash reference,$name is again the
long name of the frame.

The hash, to which$info points, contains key/value pairs, where the key is always the name of
the data, and the value is the data itself.

If the name starts with a underscore (as eg ’_code’), the data is probably binary data and not
printable. If the name starts without an underscore, it should be a text string and printable.

If the second parameter is given as 'raw' , the whole frame data is returned, but not the frame
header. If the second parameter is'intact' , no mangling of embedded"\0" and trailing
spaces is performed. If the second parameter is'hash' , then, additionally, the result is always in
the hash format; likewise, if it is 'array' , the result is an array reference (withkey =>
value pairs same as with'hash' , but ordered as in the frame). If it is'array_nokey' , only
the ‘‘value’’ parts are returned (in particular, the result is suitable to give to add_frame(),
change_frame()); in addition, if it is'array_nodecode' , then keys are not returned, and the

perl v5.10.1 2010-01-18 2

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

setting ofdecode_encoding_v2 is ignored. (The ‘‘return array’’ fl avors don’t massage the
fields for better consumption by humans, so the fields should be in format suitable for
frame_add().)

If the data was stored compressed, it is uncompressed before it is returned (even in raw mode).
Then$info contains a string with all data (which might be binary), and$name the long frame
name.

See also MP3::Tag::ID3v2−Data for a list of all supported frames, and some other explanations of
the returned data structure.

If more than one frame with name$ID is present,@rest contains $info fields for all
consequent frames with the same name. Note that after removal of f rames there may be holes in
the list of frame names (as inFRAM FRAM01 FRAM02) in the case when multiple frames of the
given type were present; the removed frames are returned asundef .

! Encrypted frames are not supported yet !

! Some frames are not supported yet, but the most common ones are supported !

get_frame_descr()
$long_name = $self−>get_frame_descr($fname);

returns a ‘‘long name’’ f or the frame (such asCOMM(eng)[lyricist birthdate]),
appropriate for interpolation, or forframe_select_by_descr().

get_frame_descriptors()
@long_names = $self−>get_frame_descriptors();

return ‘‘long names’’ f or the frames in the tag (seeget_frame_descr).

get_frame_option()
$options = get_frame_option($ID);

Option is a hash reference, the hash contains all possible options.
The value for each option is 0 or 1.

groupid −− not supported yet
encryption −− not supported yet
compression −− Compresses frame before writing tag;

compression/uncompression is done automatically
read_only −− Ignored by this library, should be obeyed by application
file_preserv −− Ignored by this library, should be obeyed by application
tag_preserv −− Ignored by this library, should be obeyed by application

set_frame_option()
$options = set_frame_option($ID, $option, $value);

Set $option to $value (0 or 1). If successfull the new set of
options is returned, undef otherwise.

groupid −− not supported yet
encryption −− not supported yet
compression −− Compresses frame before writing tag;

compression/uncompression is done automatically
read_only −− Ignored by this library, should be obeyed by application
file_preserv −− Ignored by this library, should be obeyed by application
tag_preserv −− Ignored by this library, should be obeyed by application

get_frames()
($name, @info) = get_frames($ID);
($name, @info) = get_frames($ID, 'raw');

Same asget_frame()with different order of the returned values. $name and elements of the array
@info have the same semantic as forget_frame(); each frame with id$ID produces one
elements of array@info .

perl v5.10.1 2010-01-18 3

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

as_bin()
$tag2 = $id3v2−>as_bin($ignore_error, $update_file, $raw_ok);

Returns the the current content of the ID3v2 tag as a string good to write to a file; it contains all
the necessary footers and headers.

If $ignore_error is TRUE, the frames the module does not know how to write are skipped;
otherwise it is an error to have such a frame. Returns undef on error.

If the optional argument$update_file is TRUE, an additional action is performed: if the audio
file does not contain an ID3v2 tag, or the tag in the file is smaller than the built ID3v2 tag, the
necessary 0−padding is inserted before the audio content of the file so that it is able to
accommodate the build tag (and thetagsize field of $id3v2 is updated correspondingly); in
any case the header length of$tag2 is set to reflect the space in the beginning of the audio file.

Unless$update_file has'padding' as a substring, the actual length of the string$tag2 is
not modified, so if it is smaller than the reserved space in the file, one needs to add some 0
padding at the end. Note that if the size of reserved space can shrink (as withid3v2_shrink
configuration option), then without this option it would be hard to calculate necessary padding by
hand.

If $raw_ok option is given, but not$update_file , the original contents is returned for
unmodified tags.

as_bin_raw()
$tag2 = $id3v2−>as_bin_raw($ignore_error, $update_file);

same asas_bin()with $raw_ok flag.

write_tag()
$id3v2−>write_tag($ignore_error);

Saves all frames to the file. It tries to update the file in place, when the space of the old tag is big
enough for the new tag. Otherwiseit creates a temp file with a new tag (i.e. copies the whole mp3
file) and renames/moves it to the original file name.

An extended header withCRCchecksum is not supported yet.

Encryption of frames and group ids are not supported. If$ignore_error is set, these options
are ignored and the frames are saved without these options.If $ignore_error is not set and a
tag with an unsupported option should be save, the tag is not written and a 0 is returned.

If a tag with an encrypted frame is read, and the frame is not changed it can be saved encrypted
again.

ID3v2.2 tags are converted automatically to ID3v2.3 tags during writing. If a frame cannot be
converted automatically (PIC; CMR), writing aborts and returns a 0. If$ignore_error is true,
only not convertable frames are ignored and not written, but the rest of the tag is saved as ID3v2.3.

At the moment the tag is automatically unsynchronized.

If the tag is written successfully, 1 is returned.

remove_tag()
$id3v2−>remove_tag();

Removes the whole tag from the file by copying the whole mp3−file to a temp-file and
renaming/moving that to the original filename.

Do not useremove_tag()if you only want to change a header, as otherwise the file is copied
unnecessarily. Usewrite_tag()directly, which will override an old tag.

add_frame()
$fn = $id3v2−>add_frame($fname, @data);

Add a new frame, identified by the short name$fname . The number of elements of array
@data should be as described in the ID3v2.3 standard. (See also MP3::Tag::ID3v2−Data.)
There are two exceptions: if@data is empty, it is filled with necessary number of""); if one of
required elements isencoding , it may be omitted or beundef , meaning the arguments are in

perl v5.10.1 2010-01-18 4

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

‘‘ Plain Perl (=ISOLatin−1 or Unicode) encoding’’.

It returns the the short name$fn (which can differ from$fname , when an$fname frame
already exists). If no other frame of this kind is allowed, an empty string is returned. Otherwise the
name of the newly created frame is returned (which can have a 01 or 02 or ... appended).

You hav eto callwrite_tag()to save the changes to the file.

Examples (with$id3v2−> omitted):

$f = add_frame('TIT2', 0, 'Abba'); # $f='TIT2'
$f = add_frame('TIT2', 'Abba'); # $f='TIT201', encoding=0 implicit

$f = add_frame('COMM', 'ENG', 'Short text', 'This is a comment');

$f = add_frame('COMM'); # c reates an empty frame

$f = add_frame('COMM', 'ENG'); # ! w rong ! $f=undef, becaues number
of a rguments is wrong

$f = add_frame('RBUF', $n1, $n2, $n3);
$f = add_frame('RBUF', $n1, $n2); # l ast field of RBUF is optional

If a frame has optional fieldsandencoding (only COMRframe as of ID3v2.4), there may be an
ambiguity which fields are omitted.It is resolved this way: theencoding field can be omitted
only if all other optional frames are omitted too (set it toundef instead).

add_frame_split()
The same asadd_frame(), but if the number of arguments is unsufficient, would split() the last
argument on; to obtain the needed number of arguments. Shouldbe avoided unless it is known
that the fields do not contain; (except forPOPM RBUF RVRB SYTC, where splitting may be
done non-ambiguously).

No ambiguity, since numbers do not contain ";":
$f = add_frame_split('RBUF', "$n1;$n2;$n3");

For COMRframe, in case when the fields arejoin() ed by';' , encoding field may be present
only if all the other fields are present.

change_frame()
$id3v2−>change_frame($fname, @data);

Change an existing frame, which is identified by its short name$fname eg as returned by
get_frame_ids(). @data must be same as inadd_frame().

If the frame$fname does not exist, undef is returned.

You hav eto callwrite_tag()to save the changes to the file.

remove_frame()
$id3v2−>remove_frame($fname);

Remove an existing frame. $fname is the short name of a frame, eg as returned by
get_frame_ids().

You hav eto callwrite_tag()to save the changes to the file.

copy_frames($from,$to , $overwrite , [$keep_flags,$f_ids])
Copies specified frames betweenMP3::Tag::ID3v2 objects $from , $to . Unless
$keep_flags , the copied frames have their flags cleared. If the array reference$f_ids is not
specified, all the frames (but GRID and TLEN) are considered (subject to$overwrite),
otherwise$f_ids should contain short frame ids to consider. Group ID flag is always cleared.

If $overwrite is 'delete' , frames with the same descriptors (as returned by
get_frame_descr()) in $to are deleted first, then all the specified frames are copied.If
$overwrite is FALSE, only frames with descriptors not present in$to are copied. (If one of
these two conditions is not met, the result may be not conformant to standards.)

perl v5.10.1 2010-01-18 5

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

Returns count of copied frames.

is_modified()
$id3v2−>is_modified;

Returns true if the tag was modified after it was created.

supported_frames()
$frames = $id3v2−>supported_frames();

Returns a hash reference with all supported frames. The keys of the hash are the short names of
the supported frames, the according values are the long (english) names of the frames.

what_data()
($data, $res_inp, $data_map) = $id3v2−>what_data($fname);

Returns an array reference with the needed data fields for a given frame. Atthis moment only the
internal field names are returned, without any additional information about the data format of this
field. Names beginning with an underscore (normally ’_data’) can contain binary data.(The
_encoding field is skipped in this list, since it is usually auto-deduced by this module.)

$resp_inp is a reference to a hash (keyed by the field name) describing restrictions for the
content of the data field. If the entry is undef, no restriction exists. Otherwise it is a hash.The
keys of the hash are the allowed input, the correspodending value is the value which is actually
stored in this field. If the value is undef then the key itself is valid for saving. If the hash contains
an entry with ‘‘_FREE’’, the hash contains only suggestions for the input, but other input is also
allowed.

$data_map contains values of$resp_inp in the order of fields of a frame (including
_encoding).

Example for picture types of theAPIC frame:

{"Other" => "\x00",
"32x32 pixels 'file icon' (PNG only)" => "\x01",
"Other file icon" => "\x02",
...}

title([@new_title])
Returns the title composed of the tags configured viaMP3::Tag−>config('v2title') call
(with default ’Title/Songname/Content description’ (TIT2)) from the tag. (For backward
compatibility may be called by deprecated namesong()as well.)

SetsTIT2 frame if given the optional arguments@new_title . If this is an empty string, the
frame is removed.

_comment([$language])
Returns the file comment (COMM with an empty ’Description’) from the tag, or
‘‘ Subtitle/Description refinement’’ (TIT3) frame (unless it is considered a part of the title).

comment()
$val = $id3v2−>comment();
$newframe = $id3v2−>comment('Just a comment for freddy', 'personal', 'eng');

Returns the file comment (COMM frame with the ’Description’ field indefault_descr_c
configuration variable, defalting to'') from the tag, or ‘‘Subtitle/Description refinement’’ (TIT3)
frame (unless it is considered a part of the title).

If optional arguments ($comment,$short , $language) are present, sets the comment frame.
If $language is omited, uses thedefault_language configuration variable (default is
XXX). If notXXX, this should be lowercase 3−letter abbreviation according toISO−639−2).

If $short is not defined, uses thedefault_descr_c configuration variable. If$comment is
an empty string, the frame is removed.

frame_select($fname,$descrs , $languages [, $newval1 , ...])
Used to get/set/delete frames which may be not necessarily unique in a tag.

perl v5.10.1 2010-01-18 6

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

Select short−description='', prefere language 'eng', then 'rus', then
t he third COMM frame, then any (in this case, the first or the second)
COMM frame
$val = $id3v2−>frame_select('COMM', '', ['eng', 'rus', '#2', '']); # Read
$new = $id3v2−>frame_select('COMM', '', ['eng', 'rus', '#2'], # Write

'Comment with empty "Description" and "eng"');
$new = $id3v2−>frame_select('COMM', '', ['eng', 'rus', '#2'], # Delete

undef);

Returns the contents of the first frame named$fname with a ’Description’ field in the specified
array reference$descrs and the language in the list of specified languages$languages ;
empty return otherwise.If the frame is a ‘‘simple frame’’, the frame is returned as a string,
otherwise as a hash reference; a ‘‘simple frame’’ should consist of one of Text/URL/_Data fields,
with possible addition of Language and Description fields (if the corresponding arguments were
defined).

The lists$descrs and$languages of one element can be flattened to become this element (as
with '' above). If the lists are not defined, no restriction is applied; to get the same effect with
defined arguments, use$languages of '' , and/or$descrs a hash reference. Language of the
form '#NUMBER' selects theNUMBER’s (0−based) frame with frame name$fname .

If optional arguments$newval1... are given, ALL the found frames are removed; if only one
such argument undef is given, this is the only action. Otherwise, a new frame is created
afterwards (the first elements of$descrs and$languages are used as the short description
and the language, defaulting to'' and thedefault_language configuration variable (which,
in turn, defaults toXXX; if not XXX, this should be lowercase 3−letter abbreviation according to
ISO−639−2). If new frame is created, the frame’s name is returned; otherwise the count of
removed frames is returned.

As a generalization,APIC frames are handled too, usingPicture Type instead ofLanguage ,
and auto-calculatingMIME type for (currently) TIFF/JPEG/GIF/PNG/BMPand octet-stream.
Only frames withMIME type coinciding with the auto-calculated value are considered as
‘‘ simple frames’’. Onecan use both the 1−byte format forPicture Type , and the long names
used in the ID3v2 documentation; the default value is'Cover (front)' .

Choose APIC with empty description, picture_type='Leaflet page'
my $data = $id3v2−>frame_select('APIC', '', 'Leaflet page')

or die "no expected APIC frame found";
my $format = (ref $data ? $data−>{'MIME type'}

: $ id3v2−>_Data_to_MIME($data));
I k now what to do with application/pdf only (sp?) and 'image/gif'
die "Do not know what to do with this APIC format: `$format'"

unless $format eq 'application/pdf' or $format eq 'image/gif';
$data = $data−>{_Data} if ref $data; # handle non−simple frame

Set APIC frame with empty description (front cover if no other present)
f rom content of file.gif
my $data = do { open my $f, '<', 'file.gif' and binmode $f or die;

undef $/; <$f>};
my $new_frame = $id3v2−>frame_select('APIC', '', undef, $data);

Frames with multiple ‘‘content’’ fi elds may be set by providing multiple values to set.
Alternatively, one can alsojoin() the values with';' if the splitting is not ambiguous, e.g., for
POPM RBUF RVRB SYTC. (For framesGEODandCOMR, which have aDescription field, it
should be specified among these values.)

$id3v2−>frame_select("RBUF", undef, undef, $n1, $n2, $n3);
$id3v2−>frame_select("RBUF", undef, undef, "$n1;$n2;$n3");

(By the way: consider using the methodselect_id3v2_frame()on the ‘‘parent’’ M P3::Tag object
instead [see ‘‘select_id3v2_frame’’ in M P3::Tag], orframe_select_by_descr().)

perl v5.10.1 2010-01-18 7

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

_Data_to_MIME
Internal method to extract MIME type from a string the image file content.Returns
application/octet−stream for unrecognized data (unless extraTRUE argument is given).

$format = $id3v2−>_Data_to_MIME($data);

Currently, only the first 4 bytes of the string are inspected.

frame_list()
Same asframe_select(), but returns the list of found frames, each an array reference[$N, $f]
with $N the 0−based ordinal (among frames with the given short name), and$f the contents of a
frame.

frame_have()
Same asframe_select(), but returns the count of found frames.

frame_select_by_descr()
frame_have_by_descr()
frame_list_by_descr()

$c = $id3v2−>frame_select_by_descr("COMM(fre,fra,eng,#0)[]");
$t = $id3v2−>frame_select_by_descr("TIT2");

$id3v2−>frame_select_by_descr("TIT2", "MyT"); # Set/Change
$id3v2−>frame_select_by_descr("RBUF", $n1, $n2, $n3); # Set/Change
$id3v2−>frame_select_by_descr("RBUF", "$n1;$n2;$n3"); # Set/Change
$id3v2−>frame_select_by_descr("TIT2", undef); # Remove

Same asframe_select(), frame_have(), frame_list(), but take one string argument instead of
$fname , $descrs , $languages . The argument should be of the form

NAME(langs)[descr]

Both (langs) and [descr] parts may be omitted;langsshould contain comma-separated list
of needed languages; no protection by backslashes is needed indescr. frame_select_by_descr()
will return a hash if(lang) is omited, but the frame has a language field; likewise for
[descr] ; see below for alternatives.

Remember that whenframe_select_by_descr()is used for modification,ALL found frames are
deleted before a new one is added.

(By the way: consider using the methodselect_id3v2_frame_by_descr()on the ‘‘parent’’
MP3::Tag object instead; see ‘‘select_id3v2_frame_by_descr’’ in M P3::Tag.)

frame_select_by_descr_simple()
Same asframe_select_by_descr(), but if no language is given, will not consider the frame as
‘‘ complicated’’ f rame even if it contains a language field.

frame_select_by_descr_simpler()
Same asframe_select_by_descr_simple(), but if no Description is given, will not consider the
frame as ‘‘complicated’’ f rame even if it contains aDescription field.

year([@new_year])
Returns the year (TYER/TDRC) from the tag.

SetsTYER and TDRC frames if given the optional arguments@new_year. If this is an empty
string, the frame is removed.

The format is similar to timestamps of IDv2.4.0, but ranges can be separated by− or −−, and non-
contiguous dates are separated by, (comma). Ifperiods need to be specified via duration, then
one needs to use theISO 8601/ −notation (e.g.,see

http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html

); theduration/end_timestamp is not supported.

On output, ranges of timestamps are converted to− or −− separated format depending on whether
the timestamps are years, or have additional fields.

If configuration variableyear_is_timestamp is false, the return value is always the year only
(of the first timestamp of a composite timestamp).

perl v5.10.1 2010-01-18 8

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

Recall that ID3v2.4.0 timestamp has format yyyy−MM−ddTHH:mm:ss (year, ‘‘−’ ’, month, ‘‘−’’,
day, ‘‘T’ ’, hour (out of 24), ‘‘:’ ’, minutes, ‘‘:’ ’, seconds), but the precision may be reduced by
removing as many time indicators as wanted. Hence valid timestamps are yyyy, yyyy-MM, yyyy-
MM-dd, yyyy-MM-ddTHH, yyyy−MM−ddTHH:mm and yyyy−MM−ddTHH:mm:ss. All time
stamps areUTC. For durations, use the slash character as described in 8601, and for multiple
noncontiguous dates, use multiple strings, if allowed by the frame definition.

track([$new_track])
Returns the track number (TRCK) from the tag.

SetsTRCK frame if given the optional arguments@new_track . If this is an empty string or 0,
the frame is removed.

artist([$new_artist])
Returns the artist name; it is the first existing frame from the list of

TPE1 Lead artist/Lead performer/Soloist/Performing group
TPE2 Band/Orchestra/Accompaniment
TCOM Composer
TPE3 Conductor
TEXT Lyricist/Text writer

SetsTPE1 frame if given the optional arguments@new_artist . If this is an empty string, the
frame is removed.

album([$new_album])
Returns the album name (TALB) from the tag. If none is found, returns the ‘‘Content group
description’’ (TIT1) frame (unless it is considered a part of the title).

SetsTALB frame if given the optional arguments@new_album. If this is an empty string, the
frame is removed.

genre([$new_genre])
Returns the genre string fromTCON frame of the tag.

SetsTCON frame if given the optional arguments@new_genre. If this is an empty string, the
frame is removed.

version()
$version = $id3v2−>version();
($major, $revision) = $id3v2−>version();

Returns the version of the ID3v2 tag. It returns a formatted string like ‘‘3.0’’ or an array
containing the major part (eg. 3) and revision part (eg. 0) of the version number.

new()
$tag = new($mp3fileobj);

new() needs as parameter a mp3fileobj, as created byMP3::Tag::File . new tries to find a
ID3v2 tag in the mp3fileobj. If it does not find a tag it returns undef. Otherwise it reads the tag
header, as well as an extended header, if available. It reads the rest of the tag in a buffer, does
unsynchronizing if necessary, and returns a ID3v2−object.At this moment only ID3v2.3 is
supported. Any extended header withCRC data is ignored, so noCRC check is done at the
moment. TheID3v2−object can be used to extract information from the tag.

Please use

$mp3 = MP3::Tag−>new($filename);
$mp3−>get_tags(); ## to find an existing tag, or
$id3v2 = $mp3−>new_tag("ID3v2"); ## to create a new tag

instead of using this function directly

SEE ALSO
MP3::Tag, MP3::Tag::ID3v1, MP3::Tag::ID3v2−Data

ID3v2 standard − http://www.id3.org <http://www.id3.org/id3v2−00>, <http://www.id3.org/d3v2.3.0>,
<http://www.id3.org/id3v2.4.0−structure>, <http://www.id3.org/id3v2.4.0−frames>,

perl v5.10.1 2010-01-18 9

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

MP3::Tag::ID3v2(3pm) UserContributed Perl Documentation MP3::Tag::ID3v2(3pm)

<http://id3lib.sourceforge.net/id3/id3v2.4.0−changes.txt>.

COPYRIGHT
Copyright (c) 2000−2008 Thomas Geffert, Ilya Zakharevich. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the Artistic
License, distributed with Perl.

perl v5.10.1 2010-01-18 10

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MP3::Tag::ID3v2

