
MooseX::Method::Signatures(3pm) UserContributed Perl Documentation MooseX::Method::Signatures(3pm)

NAME
MooseX::Method::Signatures − Method declarations with type constraints and no source filter

SYNOPSIS
package Foo;

use Moose;
use MooseX::Method::Signatures;

method morning (Str $name) {
$self−>say("Good morning ${name}!");

}

method hello (Str :$who, Int :$age where { $_ > 0 }) {
$self−>say("Hello ${who}, I am ${age} years old!");

}

method greet (Str $name, Bool :$excited = 0) {
if ($excited) {

$self−>say("GREETINGS ${name}!");
}
else {

$self−>say("Hi ${name}!");
}

}

$foo−>morning('Resi'); # This works.

$foo−>hello(who => 'world', age => 42); # This too.

$foo−>greet('Resi', excited => 1); # And this as well.

$foo−>hello(who => 'world', age => 'fortytwo'); # This doesn't.

$foo−>hello(who => 'world', age => −23); # This neither.

$foo−>morning; # Won't work.

$foo−>greet; # Will fail.

DESCRIPTION
Provides a proper method keyword, like ‘‘sub’’ but specifically for making methods and validating their
arguments against Moose type constraints.

SIGNATURE SYNTAX
The signature syntax is heavily based on Perl 6. However not the full Perl 6 signature syntax is
supported yet and some of it never will be.

Type Constraints
method foo ($affe) # no type checking
method bar (Animal $affe) # $affe−>isa('Animal')
method baz (Animal|Human $affe) # $affe−>isa('Animal') || $affe−>isa('Human')

Positional vs. Named
method foo ($a, $b, $c) # positional
method bar (:$a, :$b, :$c) # named
method baz ($a, $b, :$c) # combined

Required vs. Optional
method foo ($a , $b!, :$c!, :$d!) # required
method bar ($a?, $b?, :$c , :$d?) # optional

perl v5.12.4 2011-09-12 1

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MooseX::Method::Signatures

MooseX::Method::Signatures(3pm) UserContributed Perl Documentation MooseX::Method::Signatures(3pm)

Defaults
method foo ($a = 42) # defaults to 42

Constraints
method foo ($foo where { $_ % 2 == 0 }) # only even

Invocant
method foo ($moo) # invocant is called $self and is required
method bar ($self: $moo) # same, but explicit
method baz ($class: $moo) # invocant is called $class

Labels
method foo (: $affe) # called as $obj−>foo(affe => $value)
method bar (:apan($affe)) # called as $obj−>foo(apan => $value)

Tr aits
method foo (Affe $bar does trait)
method foo (Affe $bar is trait)

The only currently supported trait iscoerce , which will attempt to coerce the value provided if it
doesn’t satisfy the requirements of the type constraint.

Placeholders
method foo ($bar, $, $baz)

Sometimes you don’t care about some params you’re being called with. Just put the bare sigil instead
of a full variable name into the signature to avoid an extra lexical variable to be created.

Complex Example
method foo (SomeClass $thing where { $_−>can('stuff') }:

Str $bar = "apan",
Int :$baz! = 42 where { $_ % 2 == 0 } where { $_ > 10 })

t he invocant is called $thing, must be an instance of SomeClass and
has to implement a 'stuff' method

$bar is positional, required, must be a string and defaults to "apan"
$baz is named, required, must be an integer, defaults to 42 and needs
t o be e ven and greater than 10

BUGS, CAVEATS AND NOTES
This module is as stable now, but this is not to say that it is entirely bug free. If you notice any odd
behaviour (messages not being as good as they could for example) then please raise a bug.

Fancy signatures
Parse::Method::Signatures is used to parse the signatures. However, some signatures that can be parsed
by it aren’t supported by this module (yet).

No source filter
While this module does rely on the hairy black magic of Devel::Declare it does not depend on a source
filter. As such, it doesn’t try to parse and rewrite your source code and there should be no weird side
effects.

Devel::Declare only effects compilation. After that, it’s a normal subroutine. As such, for all that hairy
magic, this module is surprisingly stable.

What about regular subroutines?
Devel::Declare cannot yet change the way sub behaves. However, the signatures module can. Right
now it only provides very basic signatures, but it’s extendable enough that plugging
MooseX::Method::Signatures signatures into that should be quite possible.

What about the return value?
Type constraints for return values can be declared using

method foo (Int $x, Str $y) returns (Bool) { ... }

however, this feature only works with scalar return values and is still considered to be experimental.

perl v5.12.4 2011-09-12 2

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MooseX::Method::Signatures

MooseX::Method::Signatures(3pm) UserContributed Perl Documentation MooseX::Method::Signatures(3pm)

Interaction with Moose::Role
Methods not seen by a role’srequires

Because the processing of the MooseX::Method::Signaturesmethod and the Moosewith keywords
are both done at runtime, it can happen that a role will require a method before it is declared (which
will cause Moose to complain very loudly and abort the program).

For example, the following will not work:

in f ile Canine.pm

package Canine;

use Moose;
use MooseX::Method::Signatures;

with 'Watchdog';

method bark { print "Woof!\n"; }

1;

in f ile Watchdog.pm

package Watchdog;

use Moose::Role;

requires 'bark'; # will assert! evaluated before 'method' is processed

sub warn_intruder {
my $self = shift;
my $intruder = shift;

$self−>bark until $intruder−>gone;
}

1;

A workaround for this problem is to usewith only after the methods have been defined.To take our
previous example,Caninecould be reworked thus:

package Canine;

use Moose;
use MooseX::Method::Signatures;

method bark { print "Woof!\n"; }

with 'Watchdog';

1;

A better solution is to use MooseX::Declare instead of plain MooseX::Method::Signatures. It defers
application of roles until the end of the class definition. With it, our example would becomes:

in f ile Canine.pm

use MooseX::Declare;

class Canine with Watchdog {
method bark { print "Woof!\n"; }

perl v5.12.4 2011-09-12 3

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MooseX::Method::Signatures

MooseX::Method::Signatures(3pm) UserContributed Perl Documentation MooseX::Method::Signatures(3pm)

}

1;

in f ile Watchdog.pm

use MooseX::Declare;

role Watchdog {
requires 'bark';

method warn_intruder ($intruder) {
$self−>bark until $intruder−>gone;

}
}

1;

Subroutine redefined warnings

When composing a Moose::Role into a class that uses MooseX::Method::Signatures, you may get a
‘‘ Subroutine redefined’’ warning. This happens when both the role and the class define a
method/subroutine of the same name. (The way roles work, the one defined in the class takes
precedence.) To eliminate this warning, make sure that yourwith declaration happens after any
method/subroutine declarations that may have the same name as a method/subroutine within a role.

SEE ALSO
MooseX::Declare

Method::Signatures::Simple

Method::Signatures

Perl6::Subs

Devel::Declare

Parse::Method::Signatures

Moose

AUTHORS
• Florian Ragwitz <rafl AT debian DOT org>

• Ash Berlin <ash AT cpan DOT org>

• Cory Watson <gphat AT cpan DOT org>

• Daniel Ruoso <daniel AT ruoso DOT com>

• Dave Rolsky <autarch AT urth DOT org>

• Hakim Cassimally <hakim DOT cassimally AT gmail DOT com>

• Jonathan Scott Duff <duff AT pobox DOT com>

• Justin Hunter <justin DOT d DOT hunter AT gmail DOT com>

• Kent Fredric <kentfredric AT gmail DOT com>

• Maik Hentsche <maik DOT hentsche AT amd DOT com>

• Matt Kraai <kraai AT ftbfs DOT org>

• Rhesa Rozendaal <rhesa AT cpan DOT org>

• RicardoSIGNES<rjbs AT cpan DOT org>

• Steffen Schwigon <ss5 AT renormalist DOT net>

• Yanick Champoux <yanick AT babyl DOT dyndns DOT org>

• Nicholas Perez <nperez AT cpan DOT org>

perl v5.12.4 2011-09-12 4

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MooseX::Method::Signatures

MooseX::Method::Signatures(3pm) UserContributed Perl Documentation MooseX::Method::Signatures(3pm)

COPYRIGHT AND LICENSE
This software is copyright (c) 2011 by Florian Ragwitz.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.12.4 2011-09-12 5

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+MooseX::Method::Signatures

