
Net::DBus::RemoteObject(3pm) UserContributed Perl Documentation Net::DBus::RemoteObject(3pm)

NAME
Net::DBus::RemoteObject − Access objects provided on the bus

SYNOPSIS
my $service = $bus−>get_service("org.freedesktop.DBus");
my $object = $service−>get_object("/org/freedesktop/DBus");

print "Names on the bus {\n";
foreach my $name (sort @{$object−>ListNames}) {

print " ", $name, "\n";
}
print "}\n";

DESCRIPTION
This module provides theAPI for accessing remote objects available on the bus. It uses the autoloader
to fake the presence of methods based on theAPI of the remote object. There is also support for setting
callbacks against signals, and accessing properties of the object.

METHODS
my $object = Net::DBus::RemoteObject−>new($service,$object_path [, $interface]);

Creates a new handle to a remote object. The$service parameter is an instance of the
Net::DBus::RemoteService method, and$object_path is the identifier of an object exported
by this service, for example/org/freedesktop/DBus . For remote objects which implement
more than one interface it is possible to specify an optional name of an interface as the third
parameter. This is only really required, however, if two interfaces in the object provide methods
with the same name, since introspection data can be used to automatically resolve the correct
interface to call cases where method names are unique. Rather than using this constructor directly,
it is preferrable to use theget_object method on Net::DBus::RemoteService, since this caches
handles to remote objects, eliminating unneccessary introspection data lookups.

my $object = $object −>as_interface($interface);
Casts the object to a specific interface, returning a new instance of the Net::DBus::RemoteObject
specialized to the desired interface. It is only neccessary to cast objects to a specific interface, if
two interfaces export methods or signals with the same name, or the remote object does not
support introspection.

my $service = $object −>get_service
Retrieves a handle for the remote service on which this object is attached. The returned object is
an instance of Net::DBus::RemoteService

my $path = $object −>get_object_path
Retrieves the unique path identifier for this object within the service.

my $object = $object −>get_child_object($subpath, [$interface])
Retrieves a handle to a child of this object, identified by the relative path $subpath . The
returned object is an instance ofNet::DBus::RemoteObject . The optional$interface
parameter can be used to immediately cast the object to a specific type.

my $sigid = $object −>connect_to_signal($name,$coderef);
Connects a callback to a signal emitted by the object. The$name parameter is the name of the
signal within the object, and$coderef is a reference to an anonymous subroutine. When the
signal $name is emitted by the remote object, the subroutine$coderef will be invoked, and
passed the parameters from the signal. A unique$sigid will be returned, which can be later
passed todisconnect_from_signal to remove the handler

$object −>disconnect_from_signal($name,$sigid);
Disconnects from a signal emitted by the object. The$name parameter is the name of the signal
within the object. The$sigid must be the unique signal handlerID returned by a previous
connect_to_signal method call.

AUTHOR
Daniel Berrange <dan AT berrange DOT com>

perl v5.14.2 2011-06-30 1

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+Net::DBus::RemoteObject

Net::DBus::RemoteObject(3pm) UserContributed Perl Documentation Net::DBus::RemoteObject(3pm)

COPYRIGHT
Copright (C) 2004−2011, Daniel Berrange.

SEE ALSO
Net::DBus::RemoteService, Net::DBus::Object

perl v5.14.2 2011-06-30 2

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+Net::DBus::RemoteObject

