
MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

NAME
mq_notify − register for notification when a message is available

SYNOPSIS
#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

Link with −lrt .

DESCRIPTION
mq_notify() allows the calling process to register or unregister for delivery of an asynchronous notifi-
cation when a new message arrives on the empty message queue referred to by the descriptormqdes.

The sevpargument is a pointer to asigevent structure. For the definition and general details of this
structure, seesigevent(7).

If sevpis a non-NULL pointer, thenmq_notify() registers the calling process to receive message notifi-
cation. Thesigev_notify field of thesigevent structure to whichsevppoints specifies how notification
is to be performed. This field has one of the following values:

SIGEV_NONE
A "null" notification: the calling process is registered as the target for notification, but when a
message arrives, no notification is sent.

SIGEV_SIGNAL
Notify the process by sending the signal specified insigev_signo. Seesigevent(7) for general
details. Thesi_codefield of thesiginfo_t structure will be set toSI_MESGQ. In addition,
si_pid will be set to the PID of the process that sent the message, andsi_uid will be set to the
real user ID of the sending process.

SIGEV_THREAD
Upon message delivery, inv oke sigev_notify_functionas if it were the start function of a new
thread. Seesigevent(7) for details.

Only one process can be registered to receive notification from a message queue.

If sevpis NULL, and the calling process is currently registered to receive notifications for this message
queue, then the registration is removed; another process can then register to receive a message notifica-
tion for this queue.

Message notification only occurs when a new message arrives and the queue was previously empty. If
the queue was not empty at the timemq_notify() was called, then a notification will only occur after
the queue is emptied and a new message arrives.

If another process or thread is waiting to read a message from an empty queue usingmq_receive(3),
then any message notification registration is ignored: the message is delivered to the process or thread
calling mq_receive(3), and the message notification registration remains in effect.

Notification occurs once: after a notification is delivered, the notification registration is removed, and
another process can register for message notification. If the notified process wishes to receive the next
notification, it can usemq_notify() to request a further notification. This should be done before empty-
ing all unread messages from the queue. (Placing the queue in nonblocking mode is useful for empty-
ing the queue of messages without blocking once it is empty.)

RETURN VALUE
On successmq_notify() returns 0; on error, −1 is returned, witherrno set to indicate the error.

ERRORS
EBADF

The descriptor specified inmqdesis invalid.

EBUSY
Another process has already registered to receive notification for this message queue.

Linux 2010-10-04 1

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+mq_notify

MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

EINVAL
sevp−>sigev_notify is not one of the permitted values; or sevp−>sigev_notify is
SIGEV_SIGNAL andsevp−>sigev_signois not a valid signal number.

ENOMEM
Insufficient memory.

POSIX.1-2008 says that an implementationmaygenerate anEINVAL error if sevpis NULL, and the
caller is not currently registered to receive notifications for the queuemqdes.

CONFORMING TO
POSIX.1-2001.

EXAMPLE
The following program registers a notification request for the message queue named in its command-
line argument. Notificationis performed by creating a thread. The thread executes a function which
reads one message from the queue and then terminates the process.

#include <pthread.h>
#include <mqueue.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void /* Thread start function */
tfunc(union sigval sv)
{

struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine max. msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == −1)
handle_error("mq_getattr");

buf = malloc(attr.mq_msgsize);
if (buf == NULL)

handle_error("malloc");

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == −1)

handle_error("mq_receive");

printf("Read %ld bytes from MQ\n", (long) nr);
free(buf);
exit(EXIT_SUCCESS); /*Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent sev;

if (argc != 2) {
fprintf(stderr, "Usage: %s <mq-name>\n", argv[0]);
exit(EXIT_FAILURE);

Linux 2010-10-04 2

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+mq_notify

MQ_NOTIFY(3) Linux Programmer’s Manual MQ_NOTIFY(3)

}

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) −1)

handle_error("mq_open");

sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = tfunc;
sev.sigev_notify_attributes = NULL;
sev.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, &sev) == −1)

handle_error("mq_notify");

pause(); /*Process will be terminated by thread function */
}

SEE ALSO
mq_close(3), mq_getattr(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), mq_over-
view(7), sigevent(7)

COLOPHON
This page is part of release 3.35 of the Linuxman-pages project. A description of the project, and
information about reporting bugs, can be found at http://man7.org/linux/man-pages/.

Linux 2010-10-04 3

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+mq_notify

