
namespace::clean(3pm) UserContributed Perl Documentation namespace::clean(3pm)

NAME
namespace::clean − Keep imports and functions out of your namespace

SYNOPSIS
package Foo;
use warnings;
use strict;

use Carp qw(croak); # ' croak' will be removed

sub bar { 23 } # ' bar' will be removed

r emove all previously defined functions
use namespace::clean;

sub baz { bar() } # ' baz' still defined, 'bar' still bound

begin to collection function names from here again
no namespace::clean;

sub quux { baz() } # ' quux' will be removed

r emove all functions defined after the 'no' unimport
use namespace::clean;

Will print: 'No', 'No', 'Yes' and 'No'
print +(_ _PACKAGE_ _−>can('croak') ? ' Yes' : 'No'), "\n";
print +(_ _PACKAGE_ _−>can('bar') ? ' Yes' : 'No'), "\n";
print +(_ _PACKAGE_ _−>can('baz') ? ' Yes' : 'No'), "\n";
print +(_ _PACKAGE_ _−>can('quux') ? ' Yes' : 'No'), "\n";

1;

DESCRIPTION
Keeping packages clean

When you define a function, or import one, into a Perl package, it will naturally also be available as a
method. This does not per se cause problems, but it can complicate subclassing and, for example,
plugin classes that are included via multiple inheritance by loading them as base classes.

The namespace::clean pragma will remove all previously declared or imported symbols at the
end of the current package’s compile cycle. Functionscalled in the package itself will still be bound by
their name, but they won’t show up as methods on your class or instances.

By unimporting viano you can tellnamespace::clean to start collecting functions for the next
use namespace::clean; specification.

You can use the−except flag to tell namespace::clean that you don’t want it to remove a
certain function or method. A common use would be a module exporting animport method along
with some functions:

use ModuleExportingImport;
use namespace::clean −except => [qw(import)];

If you just want to−except a single sub, you can pass it directly. For more than one value you have
to use an array reference.

Explicitly removing functions when your scope is compiled
It is also possible to explicitly tellnamespace::clean what packages to remove when the
surrounding scope has finished compiling. Here is an example:

package Foo;
use strict;

blessed NOT available

perl v5.14.2 2011-12-26 1

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+namespace::clean

namespace::clean(3pm) UserContributed Perl Documentation namespace::clean(3pm)

sub my_class {
use Scalar::Util qw(blessed);
use namespace::clean qw(blessed);

blessed available
return blessed shift;

}

blessed NOT available

Moose
When usingnamespace::clean together with Moose you want to keep the installedmeta
method. So your classes should look like:

package Foo;
use Moose;
use namespace::clean −except => 'meta';
...

Same goes for Moose::Role.

Cleaning other packages
You can tell namespace::clean that you want to clean up another package instead of the one
importing. To do this you have to pass in the−cleanee option like this:

package My::MooseX::namespace::clean;
use strict;

use namespace::clean (); # no cleanup, just load

sub import {
namespace::clean−>import(

−cleanee => scalar(caller),
−except => 'meta',

);
}

If you don’t care aboutnamespace::clean s discover−and−−except logic, and just want to
remove subroutines, try ‘‘clean_subroutines’’.

METHODS
clean_subroutines

This exposes the actual subroutine-removal logic.

namespace::clean−>clean_subroutines($cleanee, qw(subA subB));

will remove subA and subB from $cleanee . Note that this will remove the subroutines
immediately and not wait for scope end. If you want to have this effect at a specific time (e.g.
namespace::clean acts on scope compile end) it is your responsibility to make sure it runs at that
time.

import
Makes a snapshot of the current defined functions and installs a B::Hooks::EndOfScope hook in the
current scope to invoke the cleanups.

unimport
This method will be called when you do a

no namespace::clean;

It will start a new section of code that defines functions to clean up.

get_class_store
This returns a reference to a hash in a passed package containing information about function names
included and excluded from removal.

perl v5.14.2 2011-12-26 2

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+namespace::clean

namespace::clean(3pm) UserContributed Perl Documentation namespace::clean(3pm)

get_functions
Takes a class as argument and returns all currently defined functions in it as a hash reference with the
function name as key and a typeglob reference to the symbol as value.

IMPLEMENTATION DETAILS
This module works through the effect that a

delete $SomePackage::{foo};

will remove the foo symbol from$SomePackage for run time lookups (e.g., method calls) but will
leave the entry alive to be called by already resolved names in the package itself.
namespace::clean will restore and therefor in effect keep all glob slots that aren’tCODE.

A test file has been added to the perl core to ensure that this behaviour will be stable in future releases.

Just for completeness sake, if you want to remove the symbol completely, useundef instead.

SEE ALSO
B::Hooks::EndOfScope

THANKS
Many thanks to Matt S Trout for the inspiration on the whole idea.

AUTHORS
• Robert ’phaylon’ Sedlacek <rs AT 474 DOT at>

• Florian Ragwitz <rafl AT debian DOT org>

• Jesse Luehrs <doy AT tozt DOT net>

• Peter Rabbitson <ribasushi AT cpan DOT org>

• Father Chrysostomos <sprout AT cpan DOT org>

COPYRIGHT AND LICENSE
This software is copyright (c) 2011 by ‘‘AUTHORS’’

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.14.2 2011-12-26 3

man.m.sourcentral.orgUbuntu 12.04 (Precise Pangolin)

https://man.m.sourcentral.org/ubuntu1204/3+namespace::clean

