NAME

```
ctzrqf.f -
```


SYNOPSIS

Functions/Subroutines

subroutine ctzrqf (M, N, A, LDA, TAU, INFO) CTZRQF

Function/Subroutine Documentation

subroutine ctzrqf (integerM, integerN, complex, dimension(lda, *)A, integerLDA, complex, dimension(*)TAU, integerINFO)
CTZRQF

Purpose:

This routine is deprecated and has been replaced by routine CTZRZF.
CTZRQF reduces the M-by-N ($\mathrm{M}<=\mathrm{N}$) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations.

The upper trapezoidal matrix A is factored as

$$
\mathrm{A}=\left(\begin{array}{ll}
\mathrm{R} & 0
\end{array}\right) * \mathrm{Z},
$$

where Z is an N -by- N unitary matrix and R is an M -by- M upper triangular matrix.

Parameters:

M
M is INTEGER
The number of rows of the matrix $\mathrm{A} . \mathrm{M}>=0$.
N
N is INTEGER
The number of columns of the matrix $\mathrm{A} . \mathrm{N}>=\mathrm{M}$.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R , and elements $\mathrm{M}+1$ to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors.

LDA
LDA is INTEGER
The leading dimension of the array A . LDA $>=\max (1, \mathrm{M})$.
$T A U$
TAU is COMPLEX array, dimension (M)
The scalar factors of the elementary reflectors.

INFO

INFO is INTEGER
= 0: successful exit
<0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley

Univ. of Colorado Denver
NAG Ltd.

Date:

November 2011

Further Details:

The factorization is obtained by Householder's method. The kth transformation matrix, $\mathrm{Z}(\mathrm{k})$, whose conjugate transpose is used to introduce zeros into the ($\mathrm{m}-\mathrm{k}+1$)th row of A, is given in the form

$$
\begin{gathered}
\mathrm{Z}(\mathrm{k})=\left(\begin{array}{cc}
\mathrm{I} & 0
\end{array}\right), \\
\binom{0}{\mathrm{~T}(\mathrm{k})}
\end{gathered}
$$

where

$$
\begin{gathered}
\mathrm{T}(\mathrm{k})=\mathrm{I}-\tan ^{*} \mathrm{u}(\mathrm{k}) * \mathrm{u}(\mathrm{k}) * * \mathrm{H}, \mathrm{u}(\mathrm{k})=\left(\begin{array}{ll}
1 &) \\
\left(\begin{array}{cc}
0 &)
\end{array}\right. \\
(\mathrm{z}(\mathrm{k})
\end{array}\right)
\end{gathered}
$$

tau is a scalar and $\mathrm{z}(\mathrm{k})$ is an ($\mathrm{n}-\mathrm{m}$) element vector. tau and $\mathrm{z}(\mathrm{k})$ are chosen to annihilate the elements of the kth row of X .

The scalar tau is returned in the kth element of TAU and the vector $u(k)$ in the kth row of A, such that the elements of $z(k)$ are in $a(k, m+1), \ldots, a(k, n)$. The elements of R are returned in the upper triangular part of A .

Z is given by

$$
\mathrm{Z}=\mathrm{Z}(1) * \mathrm{Z}(2) * \ldots * \mathrm{Z}(\mathrm{~m})
$$

Definition at line 139 of file ctzrqf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

