Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

Context Management —

Functions

CUresult cuCtxCreate (CUcontext *pctx, unsigned int flags;Udevicedev)
Create a CUIA context.
CUresult cuCtxDestroy (CUcontext ctx)
Destroy a CUIA context.
CUresult cuCtxGetApiVersion (CUcontext ctx, unsigned int *version)
Gets the contexd’API version.
CUresult cuCtxGetCacheConfig(CUfunc_cache*pconfig)
Returns the preferred cache configuration for the current context.
CUresult cuCtxGetCurrent (CUcontext*pctx)
Returns the CUR context bound to the calling CPU thread.
CUresult cuCtxGetDevice(CUdevice*device)
Returns the device ID for the current context.
CUresult cuCtxGetLimit (size_t *pvalueCUlimit limit)
Returns resource limits.
CUresult cuCtxGetSharedMemConfig(CUsharedconfigrpConfig)
Returns the current shared memory configuration for the current context.
CUresult cuCtxGetStreamPriorityRange (int *leastPriority int *greatestPriority)
Returns numerical values that correspond to the least and greatest stream priorities.
CUresult cuCtxPopCurrent (CUcontext *pctx)
Pops the current CUR context from the current CPU thread.
CUresult cuCtxPushCurrent (CUcontext ctx)
Pushes a context on the current CPU thread.
CUresult cuCtxSetCacheConfig CUfunc_cacheconfig)
Sets the preferred cache configuration for the current context.
CUresult cuCtxSetCurrent (CUcontext ctx)
Binds the specified CUDcontext to the calling CPU thread.
CUresult cuCtxSetLimit (CUIlimit limit, size_t value)
Set resource limits.
CUresult cuCtxSetSharedMemConfig{CUsharedconfigconfig)
Sets the shared memory configuration for the current context.
CUresult cuCtxSynchronize(void)
Block for a contexts tasks to complete.

Detailed Description

\brief context management functions of the loweleCUDA driver API (cuda.h)

This section describes the context management functions of theWgvZéDA driver application
programming interface.

Function Documentation
CUresult cuCtxCreate (CUcontext * pctx, unsigned int flags, CUdevice dev)

Creates a ve CUDA context and associates it with the calling thread. fllhegs parameter is

described belo. The context is created with a usage count of 1 and the cattaCtkCreate() must

call cuCtxDestroy() or when done using the context. If a context is already current to the thread, it is
supplanted by the newly created context and may be restored by a subsequent call to
cuCtxPopCurrent().

The three LSBs of thkl ags parameter can be used to controitibe OS thread, which owns the
CUDA context at the time of an API call, interacts with the OS scheduler when waiting for results from
the GPU. Only one of the scheduling flags can be set when creating a context.

« CU_CTX SCHED_AUTO: The default value if thél ags parameter is zero, uses a heuristic
based on the number of a&tiQJDA contexts in the procegsand the number of logical processors
in the systenf. If C > P, then CUDA will yield to other OS threads when waiting for the GPU,
otherwise CUB\ will not yield while waiting for results and aedly spin on the processor.

e CU_CTX _SCHED_SPIN Instruct CUIA to actively spin when waiting for results from the GPU.
This can decrease latgnwhen waiting for the GPU, but may lower the performance of CPU threads
if they are performing work in parallel with the CU{Cthread.

Version 6.0 1 Apr 2014 1


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

e CU_CTX SCHED_YIELD: Instruct CUIA to yield its thread when waiting for results from the
GPU. This can increase latgnghen waiting for the GPU, but can increase the performance of CPU
threads performing work in parallel with the GPU.

e CU _CTX _SCHED_BLOCKING_SYNC: Instruct CUIA to block the CPU thread on a
synchronization primitie when waiting for the GPU to finish work.

* CU_CTX BLOCKING_SYNC : Instruct CUIA to block the CPU thread on a synchronization
primitive when waiting for the GPU to finish work.
Deprecated:This flag was deprecated as of CAB.0 and was replaced with
CU_CTX_SCHED_BLOCKING_SYNC.

e CU_CTX _MAP_HOST: Instruct CUIA to support mapped pinned allocations. This flag must be
set in order to allocate pinned host memory that is accessible to the GPU.

e CU CTX LMEM_RESIZE_TO_MAX : Instruct CUIA to not reduce local memory after resizing
local memory for a kernel. This can peat thrashing by local memory allocations when launching
mary kernels with high local memory usage at the cost of potentially increased memory usage.

Context creation will fail wittCUDA_ERROR_UNKNOWN if the compute mode of the device is
CU_COMPUTEMODE_PROHIBITED . Smilarly, context creation will also fail with
CUDA_ERROR_UNKNOWN if the compute mode for the device is set to
CU_COMPUTEMODE_EXCLUSIVE and there is already an agtiontext on the device. The
functioncuDeviceGetAttribute() can be used with
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE to determine the compute mode of the device.
Thenvidia-smitool can be used to set the compute mode for devices. Documentatioidifmismican
be obtained by passing a —h option to it.

Parameters:
pctx- Returned context handle of theweontext
flags- Context creation flags
dev- Device to create context on

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_DEVICE , CUDA_ERROR_INVALID_VALUE |,
CUDA_ERROR_OUT_OF_MEMORY, CUDA_ERROR_UNKNOWN

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfig
cuCtxSetLimit, cuCtxSynchronize

CUresult cuCtxDestroy (CUcontext ctx)

Destroys the CUR context specified bgt x. The contextt x will be destroyed mgardless of how
mary threads it is current to. It is the responsibility of the calling function to ensure that no API call
issues usingt x while cuCtxDestroy() is executing.

If ct x is current to the calling thread thehx will also be popped from the current threadintext
stack (as thougbuCtxPopCurrent() were called). Itt x is current to other threads, thehx will
remain current to those threads, and attempting to actesgom those threads will result in the error
CUDA_ERROR_CONTEXT_IS_DESTROYED.

Parameters:
ctx - Context to destroy

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

Version 6.0 1 Apr 2014 2


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

See also:
cuCtxCreate, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfig
cuCtxSetLimit, cuCtxSynchronize

CUresult cuCtxGetApiVersion (CUcontext ctx, unsigned int * version)
Returns a version numberwrer si on corresponding to the capabilities of the context (e.g. 3010 or
3020), which library deslopers can use to direct callers to a specific API versiart.Xfis NULL,
returns the API version used to create the currently bound context.

Note that ne& API versions are only introduced when context capabilities are changed that break binary
compatibility, so tie API version and drér version may be different. For example, it is valid for the
API version to be 3020 while the der version is 4020.

Parameters:
ctx - Context to check
version- Pointer to version

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_UNKNOWN

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetDevice cuCtxGetLimit , cuCtxPopCurrent,
cuCtxPushCurrent, cuCtxSetCacheConfigcuCtxSetLimit, cuCtxSynchronize

CUresult cuCtxGetCacheConfig (CUfunc_cache * pconfig)
On devices where the L1 cache and shared memory use the same hardware resources, this function
returns througlpconf i g the preferred cache configuration for the current context. This is only a
preference. The drér will use the requested configuration if possible, but it is free to choose a different
configuration if required toxecute functions.

This will return apconfi g of CU_FUNC_CACHE_PREFER_NONEon devices where the size of
the L1 cache and shared memory are fixed.

The supported cache configurations are:

« CU_FUNC_CACHE_PREFER_NONE no preference for shared memory or L1 (default)

e CU_FUNC_CACHE_PREFER_SHARED prefer larger shared memory and smaller L1 cache
e CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and smaller shared memory

e CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache and shared memory

Parameters:
pconfig- Returned cache configuration

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetDevice cuCtxGetLimit ,
cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfigcuCtxSetLimit,
cuCtxSynchronize cuFuncSetCacheConfig

CUresult cuCtxGetCurrent (CUcontext * pctx)
Returns in* pct x the CUDA context bound to the calling CPU thread. If no context is bound to the
calling CPU thread thehpct x is set to NULL andCUDA_SUCCESSIs returned.

Parameters:

(=% Version 6.0 1 Apr 2014 3


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

pctx- Returned context handle

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxSetCurrent, cuCtxCreate, cuCtxDestroy

CUresult cuCtxGetDevice (CUdevice * device)
Returns it devi ce the ordinal of the current contextevice.

Parameters:
device- Returned device ID for the current context

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE ,

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetLimit ,
cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfigcuCtxSetLimit,
cuCtxSynchronize

CUresult cuCtxGetLimit (size_t * pvalue, CUlimit limit)
Returns it pval ue the current size dfi ni t . The supporte€Ulimit values are:

 CU_LIMIT_ST ACK_SIZE: stack size in bytes of each GPU thread.

e CU_LIMIT_PRINTF_FIFO_SIZE : size in bytes of the FIFO used by the printf() device system
call.

e« CU_LIMIT_MALLOC_HEAP_SIZE : size in bytes of the heap used by the malloc() and free()
device system calls.

e CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH : maximum grid depth at which a thread can issue
the device runtime call cudaDeviceSynchronize() to wait on child grid launches to complete.

e CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT : maximum number of
outstanding device runtime launches that can be made from this context.

Parameters:
limit - Limit to query
pvalue- Returned size of limit

Returns:
CUDA_SUCCESS CUDA_ERROR_INVALID_VALUE ,
CUDA_ERROR_UNSUPPORTED_LIMIT

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfigcuCtxSetLimit,
cuCtxSynchronize

CUresult cuCtxGetSharedMemConfig (CUsharedconfig * pConfig)
This function will return ipConf i g the current size of shared memory banks in the current context.
On devices with configurable shared memory batkS§ixSetSharedMemConfigcan be used to
change this setting, so that all subsequent kernel launches will by default use bamksize. When
cuCtxGetSharedMemConfigis called on devices without configurable shared menitomll return
the fixed bank size of the hardware.

(=% Version 6.0 1 Apr 2014 4


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

The returned bank configurations can be either:

e CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE : shared memory bank width is
four bytes.

e CU_SHARED _MEM_CONFIG_EIGHT_BYTE_BANK_SIZE : shared memory bank width will
eight bytes.

Parameters:
pConfig- returned shared memory configuration

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetLimit, cuCtxSynchronize
cuCtxGetSharedMemConfig cuFuncSetCacheConfig

CUresult cuCtxGetStreamPriorityRange (int * leastPriority, int * greatestPriority)

Returns il east Pri ority and*great est Pri ori ty the numerical values that correspond to
the least and greatest stream priorities respbgtiStream priorities follav a cnvention where lower
numbers imply greater priorities. The range of meaningful stream prioritiesislyi
[*greatestPriority,*l eastPriority].Ifthe user attempts to create a stream with a priority
value that is outside the meaningful range as specified by this API, the priority is automatically
clamped down or up to eithef east Priority or*great est Priority respectiely. See
cuStreamCreateWithPriority for details on creating a priority stream. A NULL may be passed in for
*|eastPriorityor*greatestPriority ifthe value is not desired.

This function will return '0" in botht | east Pri ority and*great est Pri ori ty if the current
contexts device does not support stream priorities (seBeviceGetAttribute).

Parameters:
leastPriority - Pointer to an int in which the numerical value for least stream priority is returned
greatestPriority- Pointer to an int in which the numerical value for greatest stream priority is
returned

Returns:
CUDA_SUCCESS CUDA_ERROR_INVALID_VALUE ,

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreateWithPriority , cuStreamGetPriority, cuCtxGetDevice cuCtxSetLimit,
cuCtxSynchronize

CUresult cuCtxPopCurrent (CUcontext * pctx)

Pops the current CUbcontext from the CPU thread and passes back the old context handle in
*pct x. That context may then be made current to a different CPU thread by calling
cuCtxPushCurrent().

If a context was current to the CPU thread befm@txCreate() or cuCtxPushCurrent() was clled,
this function makes that context current to the CPU thread again.

Parameters:
pctx- Returned ne context handle

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT

Note:
Note that this function may also return error codes from previous, asynchronous launches.

Version 6.0 1 Apr 2014 5


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPushCurrent, cuCtxSetCacheConfigcuCtxSetLimit,
cuCtxSynchronize

CUresult cuCtxPushCurrent (CUcontext ctx)
Pushes the gén contextct x onto the CPU threasl'dack of current contexts. The specified context
becomes the CPU threadurrent context, so all CUBfunctions that operate on the current context
are affected.

The previous current context may be made current again by cali®tgDestroy() or
cuCtxPopCurrent().

Parameters:
ctx - Context to push

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxSetCacheConfigcuCtxSetLimit,
cuCtxSynchronize

CUresult cuCtxSetCacheConfig (CUfunc_cache config)
On devices where the L1 cache and shared memory use the same hardware resources, this sets through
confi g the preferred cache configuration for the current context. This is only a preferencevaéhe dri
will use the requested configuration if possible, but it is free to choose a different configuration if
required to recute the function. Apfunction preference set vimFuncSetCacheConfig(Will be
preferred ger this context-wide setting. Setting the context-wide cache configuration to
CU_FUNC_CACHE_PREFER_NONEwill cause subsequent kernel launches to prefer to not change
the cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a
device-side synchronization point.

The supported cache configurations are:

« CU_FUNC_CACHE_PREFER_NONE no preference for shared memory or L1 (default)

* CU_FUNC_CACHE_PREFER_SHARED prefer larger shared memory and smaller L1 cache
e CU_FUNC_CACHE_PREFER_L1: prefer larger L1 cache and smaller shared memory

e CU_FUNC_CACHE_PREFER_EQUAL: prefer equal sized L1 cache and shared memory

Parameters:
config- Requested cache configuration

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetLimit, cuCtxSynchronize
cuFuncSetCacheConfig

Version 6.0 1 Apr 2014 6


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

CUresult cuCtxSetCurrent (CUcontext ctx)

Binds the specified CUBcontext to the calling CPU thread.df x is NULL then the CUIB context
previously bound to the calling CPU thread is unboundGdBA_SUCCESSIs returned.

If there exists a CUR context stack on the calling CPU thread, this will replace the top of that stack
with ct x. If ct x is NULL then this will be equilent to popping the top of the calling CPU thread'’s
CUDA context stack (or a no-op if the calling CPU threg@dJDA context stack is empty).

Parameters:
ctx - Context to bind to the calling CPU thread

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxGetCurrent, cuCtxCreate, cuCtxDestroy

CUresult cuCtxSetLimit (CUlimit limit, size_t value)

Settingl i m t toval ue is a request by the application to update the current limit maintained by the
context. The drier is free to modify the requested value to meet h/w requirements (this could be
clamping to minimum or maximum values, rounding up to nearest element size, etc). The application
can useuCtxGetLimit() to find out exactly what the limit has been set to.

Setting eaclCUIlimit has its own specific restrictions, so each is discussed here.

 CU_LIMIT_ST ACK_SIZE controls the stack size in bytes of each GPU thread. This limit is only
applicable to devices of compute capability 2.0 and higktegmpting to set this limit on devices of
compute capability less than 2.0 will result in the error
CUDA_ERROR_UNSUPPORTED_LIMIT being returned.

 CU_LIMIT_PRINTF_FIFO_SIZE controls the size in bytes of the FIFO used by the printf()
device system call. SettifgU_LIMIT_PRINTF_FIFO_SIZE must be performed before
launching ag kernel that uses the printf() device system call, otherwise
CUDA_ERROR_INVALID_VALUE will be returned. This limit is only applicable to devices of
compute capability 2.0 and highé&ttempting to set this limit on devices of compute capability less
than 2.0 will result in the err&fUDA_ERROR_UNSUPPORTED_LIMIT being returned.

e CU_LIMIT_MALLOC_ HEAP_SIZE controls the size in bytes of the heap used by the malloc()
and free() device system calls. Sett®ld LIMIT_MALLOC_HEAP_SIZE must be performed
before launching gnkernel that uses the malloc() or free() device system calls, otherwise
CUDA_ERROR_INVALID_VALUE will be returned. This limit is only applicable to devices of
compute capability 2.0 and highé&ttempting to set this limit on devices of compute capability less
than 2.0 will result in the err&fUDA_ERROR_UNSUPPORTED_LIMIT being returned.

e« CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH controls the maximum nesting depth of a grid at
which a thread can safely call cudaDeviceSynchronize(). Setting this limit must be performed before
ary launch of a kernel that uses the device runtime and calls cudaDeviceSynchronizefebo
default sync depth, twlevds of grids. Calls to cudaDeviceSynchronize() will fail with error code
cudaErrorSyncDepthExceeded if the limitation is violated. This limit can be set smaller than the
default or up the maximum launch depth of 24. When setting this limit, keep in mind that additional
levels of sync depth require the der to resere large amounts of device memory which can no
longer be used for user allocations. If these reservations of device memanyGaxiSetLimit will
returnCUDA_ERROR_OUT_OF_MEMORY , and the limit can be reset to a lower value. This
limit is only applicable to devices of compute capability 3.5 and higtimmpting to set this limit
on devices of compute capability less than 3.5 will result in the error
CUDA_ERROR_UNSUPPORTED_LIMIT being returned.

e« CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT controls the maximum number
of outstanding device runtime launches that can be made from the current context. A grid is
outstanding from the point of launch up until the grid is known te feen completed. Device
runtime launches which violate this limitation fail and return
cudaErrorLaunchPendingCountExceeded when cudaGetLastError() is called after launch. If more

Version 6.0 1 Apr 2014 7


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

pending launches than the default (2048 launches) are needed for a module using the device runtime,
this limit can be increased. Keep in mind that being able to sustain additional pending launches will
require the drier to resere larger amounts of device memory upfront which can no longer be used

for allocations. If these reservations failCtxSetLimit will return

CUDA_ERROR_OUT_OF_MEMORY , and the limit can be reset to a lower value. This limit is

only applicable to devices of compute capability 3.5 and higttesmpting to set this limit on

devices of compute capability less than 3.5 will result in the error
CUDA_ERROR_UNSUPPORTED_LIMIT being returned.

Parameters:
limit - Limit to set
value- Size of limit

Returns:
CUDA_SUCCESS CUDA_ERROR_INVALID_VALUE ,
CUDA_ERROR_UNSUPPORTED_LIMIT , CUDA_ERROR_OUT_OF_MEMORY

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfig
cuCtxSynchronize

CUresult cuCtxSetSharedMemConfig (CUsharedconfig config)
On devices with configurable shared memory banks, this function will set the codtar€d memory
bank size which is used for subsequent kernel launches.

Changed the shared memory configuration between launches may insert a device side synchronization
point between those launches.

Changing the shared memory bank size will not increase shared memory usage or affectypotupanc
kernels, but may ha major effects on performance. Larger bank sizes willnaflor greater potential
bandwidth to shared memeotyt will change what kinds of accesses to shared memory will result in
bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.
The supported bank configurations are:

e CU_SHARED_MEM_CONFIG_DEFAULT BANK_SIZE: set bank width to the default initial
setting (currentlyfour bytes).

e CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE : set shared memory bank width to
be natvely four bytes.

« CU_SHARED_ MEM_CONFIG_EIGHT_BYTE_BANK_SIZE : set shared memory bank width
to be natiely eight bytes.

Parameters:
config- requested shared memory configuration

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetLimit, cuCtxSynchronize
cuCtxGetSharedMemConfig cuFuncSetCacheConfig

CUresult cuCtxSynchronize (void)
Blocks until the device has completed all preceding requested tcasitsSynchronize()returns an
error if one of the preceding tasks failed. If the context was created with the

Version 6.0 1 Apr 2014 8


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Context Management(3) Doxygen Contet Management(3)

CU_CTX_SCHED_BLOCKING_SYNC flag, the CPU thread will block until the GPU context has
finished its work.

Returns:
CUDA_SUCCESS CUDA_ERROR_DEINITIALIZED
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuCtxCreate, cuCtxDestroy, cuCtxGetApiVersion, cuCtxGetCacheConfig cuCtxGetDevice
cuCtxGetLimit , cuCtxPopCurrent, cuCtxPushCurrent, cuCtxSetCacheConfig
cuCtxSetLimit

Author
Generated automatically by Doxygen from the source code.

(=% Version 6.0 1 Apr 2014 9


https://man.m.sourcentral.org/ubuntu1410/3+cuCtxPushCurrent

