Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

NAME
Device Management -

Functions
cudaError_t cudaChooseDevicdint *device, const struatudaDeviceProp*prop)
Select compute-device whibest matches criteria.
__cudart_builtin__cudaError_t cudaDeviceGetAttribute (int *value, enuncudaDeviceAttr attr, int
device)
Returns information about the device.
cudaError_t cudaDeviceGetByPCIBusld(int *device, const char *pciBusld)
Returns a handle to a compute device.
__cudart_builtin__cudaError_t cudaDeviceGetCacheConfigenumcudaFuncCache
*pCacheConfig)
Returns the preferred cache configuration for the current device.
__cudart_builtin__cudaError_t cudaDeviceGetLimit (size_t *pValue, enumudaLimit limit)
Returns resource limits.
cudaError_t cudaDeviceGetPCIBusld(char *pciBusld, int len, int device)
Returns a PCI Bus Id string for the device.
___cudart_builtin__cudaError_t cudaDeviceGetSharedMemConfigenumcudaSharedMemConfig
*pConfig)
Returns the shared memory configuration for the current device.
__cudart_builtin__cudaError_t cudaDeviceGetStreamPriorityRange(int *leastPriority int
*greatestPriority)
Returns numerical values that correspond to the least and greatest stream priorities.
cudaError_t cudaDeviceRese(void)
Destroy all allocations and reset all state on the current device in the current process.
cudaError_t cudaDeviceSetCacheConfigenumcudaFuncCachecacheConfig)
Sets the preferred cache configuration for the current device.
cudaError_t cudaDeviceSetLimit (enumcudaLimit limit, size_t value)
Set resource limits.
cudaError_t cudaDeviceSetSharedMemConfigenumcudaSharedMemConfigconfig)
Sets the shared memory configuration for the current device.
__cudart_builtin__cudaError_t cudaDeviceSynchronize(void)
Wait for compute device to finish.
__cudart_builtin__cudaError_t cudaGetDevice(int *device)
Returns whik deuice is currently being used.
__cudart_builtin__cudaError_t cudaGetDeviceCount(int *count)
Returns the number of compute-capable devices.
___cudart_builtin__cudaError_t cudaGetDeviceProperties(structcudaDeviceProp*prop, int
device)
Returns information about the compute-device.
cudaError_t cudalpcCloseMemHandle(void *devPtr)
Close memory mapped with cudalpcOpenMemHandle.
cudaError_t cudalpcGetEventHandle (cudalpcEventHandle_t*handle,cudaEvent_tevent)
Gets an interprocess handle for agously allocated event.
cudaError_t cudalpcGetMemHandle (cudalpcMemHandle_t*handle, void *devPtr)
Gets an interprocess memory handle for an existing device memory allocation.
cudaError_t cudalpcOpenEventHandle (cudaEvent_t*event, cudalpcEventHandle_thandle)
Opens an interprocess event handle for use in the current process.
cudaError_t cudalpcOpenMemHandle (void **devPtr,cudalpcMemHandle_thandle, unsigned int
flags)
Opens an interprocess memory handle exported from another process and returns a device
pointer usable in the local process.
cudaError_t cudaSetDevice(int device)
Set device to be used for GPU executions.
cudaError_t cudaSetDeviceFlaggunsigned int flags)
Sets flags to be used for device executions.
cudaError_t cudaSetValidDevices(int *device_aryint len)
Set a list of devices that can be used for CUDA.

Version 6.0 1 Apr 2014 1

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

Detailed Description
CUDART_DEVICE

\brief device management functions of the GUidintime API (cuda_runtime_api.h)

This section describes the device management functions of thé& @uifime application
programming interface.

Function Documentation
cudaError_t cudaChooseDevice (int * device, const struct cudaDeviceProp * prop)
Returns it devi ce the device which has properties that best maptop.

Parameters:
device- Device with best match
prop - Desired device properties

Returns:
cudaSuccesscudaErrorin validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCountcudaGetDevice cudaSetDevicecudaGetDeviceProperties

__cudart_builtin__ cudaError_t cudaDeviceGetAttribute (int * value, enum cudaDeviceAttr attr, int
device)
Returns it val ue the integer value of the attribué¢ t r on devicedevi ce. The supported
attributes are:

» cudaDevAttrMaxThreadsPerBlock: Maximum number of threads per block;
» cudaDevAttrMaxBlockDimX : Maximum x-dimension of a block;

» cudaDevAttrMaxBlockDimY : Maximum y-dimension of a block;

» cudaDevAttrMaxBlockDimZ : Maximum z-dimension of a block;

» cudaDevAttrMaxGridDimX : Maximum x-dimension of a grid;

» cudaDevAttrMaxGridDimY : Maximum y-dimension of a grid;

» cudaDevAttrMaxGridDimZ : Maximum z-dimension of a grid;

» cudaDevAttrMaxSharedMemoryPerBlock: Maximum amount of shared memomgiable to a
thread block in bytes;

» cudaDevAttrTotalConstantMemory: Memory &ailable on device for __constant__ variables in a
CUDA C kernel in bytes;

» cudaDevAttrWarpSize: Warp size in threads;

» cudaDevAttrMaxPitch: Maximum pitch in bytes allowed by the memory gdpnctions that
involve memory regions allocated throughdaMallocPitch();

» cudaDevAttrMaxTexturelDWidth: Maximum 1D texture width;

» cudaDevAttrMaxTexturelDLinearWidth : Maximum width for a 1D texture bound to linear
memory;

» cudaDevAttrMaxTexturelDMipmappedWidth : Maximum mipmapped 1D texture width;
» cudaDevAttrMaxTexture2DWidth: Maximum 2D texture width;
» cudaDevAttrMaxTexture2DHeight: Maximum 2D texture height;

» cudaDevAttrMaxTexture2DLinearWidth : Maximum width for a 2D texture bound to linear
memory;

» cudaDevAttrMaxTexture2DLinearHeight : Maximum height for a 2D texture bound to linear
memory;

» cudaDevAttrMaxTexture2DLinearPitch : Maximum pitch in bytes for a 2D texture bound to linear
memory;

Version 6.0 1 Apr 2014 2

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

» cudaDevAttrMaxTexture2DMipmappedWidth : Maximum mipmapped 2D texture width;
» cudaDevAttrMaxTexture2DMipmappedHeight: Maximum mipmapped 2D texture height;
» cudaDevAttrMaxTexture3DWidth: Maximum 3D texture width;

» cudaDevAttrMaxTexture3DHeight: Maximum 3D texture height;

» cudaDevAttrMaxTexture3DDepth: Maximum 3D texture depth;

» cudaDevAttrMaxTexture3DWidthAlt : Alternate maximum 3D texture width, O if no alternate
maximum 3D texture size is supported;

» cudaDevAttrMaxTexture3DHeightAlt : Alternate maximum 3D texture height, O if no alternate
maximum 3D texture size is supported;

» cudaDevAttrMaxTexture3DDepthAlt: Alternate maximum 3D texture depth, 0 if no alternate
maximum 3D texture size is supported;

» cudaDevAttrMaxTextureCubemapWidth: Maximum cubemap texture width or height;
» cudaDevAttrMaxTexturelDLayeredWidth : Maximum 1D layered texture width;

» cudaDevAttrMaxTexturelDLayeredLayers: Maximum layers in a 1D layered texture;
» cudaDevAttrMaxTexture2DLayeredWidth : Maximum 2D layered texture width;

» cudaDevAttrMaxTexture2DLayeredHeight: Maximum 2D layered texture height;

» cudaDevAttrMaxTexture2DLayeredLayers: Maximum layers in a 2D layered texture;

» cudaDevAttrMaxTextureCubemaplLayeredWidth: Maximum cubemap layered texture width or
height;

» cudaDevAttrMaxTextureCubemaplLayeredLayers Maximum layers in a cubemap layered
texture;

» cudaDevAttrMaxSurfacelDWidth: Maximum 1D surface width;

» cudaDevAttrMaxSurface2DWidth: Maximum 2D surface width;

» cudaDevAttrMaxSurface2DHeight Maximum 2D surface height;

» cudaDevAttrMaxSurface3DWidth: Maximum 3D surface width;

» cudaDevAttrMaxSurface3DHeight Maximum 3D surface height;

» cudaDevAttrMaxSurface3DDepth Maximum 3D surface depth;

» cudaDevAttrMaxSurfacelDLayeredWidth: Maximum 1D layered surface width;

» cudaDevAttrMaxSurfacelDLayeredLayers Maximum layers in a 1D layered surface;
» cudaDevAttrMaxSurface2DLayeredWidth: Maximum 2D layered surface width;

» cudaDevAttrMaxSurface2DLayeredHeight Maximum 2D layered surface height;

» cudaDevAttrMaxSurface2DLayeredLayers Maximum layers in a 2D layered surface;
» cudaDevAttrMaxSurfaceCubemapWidth: Maximum cubemap surface width;

» cudaDevAttrMaxSurfaceCubemapLayeredWidth: Maximum cubemap layered surface width;

» cudaDevAttrMaxSurfaceCubemapLayeredLayers Maximum layers in a cubemap layered
surface;

» cudaDevAttrMaxRegistersPerBlock Maximum number of 32-bit registergadable to a thread
block;

» cudaDevAttrClockRate: Peak clock frequencin kilohertz;

» cudaDevAttrTextureAlignment: Alignment requirement; texture base addresses aligned to
textureAlign bytes do not need an offset applied to texture fetches;

» cudaDevAttrTexturePitchAlignment: Pitch alignment requirement for 2D texture references bound
to pitched memory;

» cudaDevAttrGpuOverlap: 1 if the device can concurrently gomemory between host and device
while executing a kernel, or 0 if not;

Version 6.0 1 Apr 2014 3

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

» cudaDevAttrMultiProcessorCount: Number of multiprocessors on the device;

» cudaDevAttrKernelExecTimeout: 1 if there is a run time limit for kernelgeuted on the device,
or 0 if not;

» cudaDevAttrintegrated: 1 if the device is integrated with the memory subsystem, or 0 if not;

» cudaDevAttrCanMapHostMemory: 1 if the device can map host memory into the @LHddress
space, or 0 if not;

» cudaDevAttrComputeMode: Compute mode is the compute mode that the device is currently in.
Available modes are as follows:

¢ cudaComputeModeDefault Default mode - Device is not restricted and multiple threads can use
cudaSetDevice(with this device.

¢ cudaComputeModeExclusve: Compute-exclusie node - Only one thread will be able to use
cudaSetDevice(with this device.

¢ cudaComputeModeProhibited Compute-prohibited mode - No threads can use
cudaSetDevice(with this device.

¢ cudaComputeModeExclusveProcess Compute-exclusie-process mode - Marthreads in one
process will be able to usedaSetDevice(Wwith this device.

» cudaDevAttrConcurrentKernels: 1 if the device supportsxecuting multiple kernels within the
same context simultaneousty 0 if not. It is not guaranteed that multiple kernels will be resident on
the device concurrently so this feature should not be relied upon for correctness;

» cudaDevAttrEccEnabled 1 if error correction is enabled on the device, O if error correction is
disabled or not supported by the device;

» cudaDevAttrPciBusld: PCI bus identifier of the device;
» cudaDevAttrPciDeviceld: PCI device (also known as slot) identifier of the device;

» cudaDevAttrTccDriver: 1 if the device is using a TCC der. TCC is only aailable on Tesla
hardware running Windows Vista or later;

» cudaDevAttrMemoryClockRate: Peak memory clock frequenén kilohertz;

» cudaDevAttrGlobalMemoryBusWidth : Global memory bus width in bits;

» cudaDevAttrL2CacheSize Size of L2 cache in bytes. 0 if the device doebavel2 cache;

» cudaDevAttrMaxThreadsPerMultiProcessor. Maximum resident threads per multiprocessor;

» cudaDevAttrUnifiedAddressing: 1 if the device shares a unified address space with the host, or O if
not;

» cudaDevAttrComputeCapabilityMajor : Major compute capability version number;

» cudaDevAttrComputeCapabilityMinor : Minor compute capability version number;

» cudaDevAttrStreamPrioritiesSupported: 1 if the device supports stream priorities, or 0 if not;

» cudaDevAttrGlobalL1CacheSupported 1 if device supports caching globals in L1 cache, 0 if not;
» cudaDevAttrGlobalL1CacheSupported 1 if device supports caching locals in L1 cache, 0 if not;

» cudaDevAttrMaxSharedMemoryPerMultiprocessor. Maximum amount of shared memory
available to a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously
resident on a multiprocessor;

» cudaDevAttrMaxRegistersPerMultiprocessor. Maximum number of 32-bit registergaiable to a
multiprocessor; this number is shared by all thread blocks simultaneously resident on a
multiprocessor;

» cudaDevAttrManagedMemSupported: 1 if device supports allocating managed m@ihoo;
» cudaDevAttriIsMultiGpuBoard : 1 if device is on a multi-GPU board, 0 if not;

» cudaDevAttrMultiGpuBoardGroupID : Unique identifier for a group of devices on the same multi-
GPU board;

Parameters:

Version 6.0 1 Apr 2014 4

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

value- Returned device attribute value
attr - Device attribute to query
device- Device number to query

Returns:
cudaSuccesscudaErrorin validDevice, cudaErrorin validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCountcudaGetDevice cudaSetDevicecudaChooseDevice
cudaGetDeviceProperties

cudaError_t cudaDeviceGetByPCIBusld (int * device, const char * pciBusld)
Returns it devi ce a device ordinal gven a RCI bus ID string.

Parameters:
device- Returned device ordinal
pciBusld- String in one of the following forms: [domain]:[bus]:[device].[function]
[domain]:[bus]:[device] [bus]:[device].[function] whed®rai n, bus, devi ce, andf uncti on
are all hexadecimal values

Returns:
cudaSuccesscudaErrorin validValue, cudaErrorin validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetPCIBusId

__cudart_builtin__ cudaError_t cudaDeviceGetCacheConfig (enum cudaFuncCache * pCacheConfig)
On devices where the L1 cache and shared memory use the same hardware resources, this returns
throughpCacheConf i g the preferred cache configuration for the current device. This is only a
preference. The runtime will use the requested configuration if possible, but it is free to choose a
different configuration if required toxecute functions.

This will return apCacheConf i g of cudaFuncCachePreferNonen devices where the size of the
L1 cache and shared memory are fixed.

The supported cache configurations are:

» cudaFuncCachePreferNoneno preference for shared memory or L1 (default)

» cudaFuncCachePreferSharedprefer larger shared memory and smaller L1 cache
» cudaFuncCachePreferL1 prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual prefer equal size L1 cache and shared memory

Parameters:
pCacheConfig Returned cache configuration

Returns:
cudaSuccesscudaErrorlinitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfigudaFuncSetCacheConfig (C APl)cudaFuncSetCacheConfig
(C++ API)

__cudart_builtin__ cudaError_t cudaDeviceGetLimit (size_t * pValue, enum cudaLimit limit)
Returns in* pVal ue the current size dfi ni t . The supportedudalLimit values are:

» cudaLimitStackSize stack size in bytes of each GPU thread;

» cudaLimitPrintfFifoSize : size in bytes of the shared FIFO used by the printf() and fprintf() device
system calls.

Version 6.0 1 Apr 2014 5

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

» cudaLimitMallocHeapSize: size in bytes of the heap used by the malloc() and free() device system
calls;

 cudaLimitDevRuntimeSyncDepth maximum grid depth at which a thread can isssue the device
runtime callcudaDeviceSynchronize(Jo wait on child grid launches to complete.

 cudaLimitDevRuntimePendingLaunchCount maximum number of outstanding device runtime
launches.

Parameters:
limit - Limit to query
pValue- Returned size of the limit

Returns:
cudaSuccesscudaErrorUnsupportedLimit , cudaErrorin validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetLimit

cudaError_t cudaDeviceGetPCIBusld (char * pciBusld, int len, int device)
Returns an ASCII string identifying the devidev in the NULL-terminated string pointed to by
pci Busl d. | en specifies the maximum length of the string that may be returned.

Parameters:
pciBusld- Returned identifier string for the device in the following format
[domain]:[bus]:[device].[function] wherdomai n, bus, devi ce, andf unct i on are all
hexadecimal values. pciBusld should be large enough to store 13 characters including the NULL-
terminator.
len- Maximum length of string to store imane
device- Device to get identifier string for

Returns:
cudaSuccesscudaErrorin validValue, cudaErrorin validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetByPCIBusld

__cudart_builtin__ cudaError_t cudaDeviceGetSharedMemConfig (enum cudaSharedMemConfig *
pConfig)
This function will return imppConf i g the current size of shared memory banks on the current device.
On devices with configurable shared memory batikdaDeviceSetSharedMemConfigan be used to
change this setting, so that all subsequent kernel launches will by default use bamksize. When
cudaDeviceGetSharedMemConfigs called on devices without configurable shared menitoml|
return the fixed bank size of the hardware.

The returned bank configurations can be either:
» cudaSharedMemBankSizeFourByte - shared memory bank width is four bytes.
» cudaSharedMemBankSizeEightByte - shared memory bank width is eight bytes.

Parameters:
pConfig- Returned cache configuration

Returns:
cudaSuccesscudaErrorin validValue, cudaErrorlnitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfigudaDeviceGetCacheConfigcudaDeviceSetSharedMemConfig
cudaFuncSetCacheConfig

Version 6.0 1 Apr 2014 6

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

__cudart_builtin__ cudaError_t cudaDeviceGetStreamPriorityRange (int * leastPriority, int *
greatestPriority)
Returns il east Pri ority and*great est Pri ori ty the numerical values that correspond to
the least and greatest stream priorities respgtiStream priorities follav a cnvention where lower
numbers imply greater priorities. The range of meaningful stream prioritiesislyi
[*greatestPriority,*l eastPriority].Ifthe user attempts to create a stream with a priority
value that is outside the the meaningful range as specified by this API, the priority is automatically
clamped down or up to eith&f east Priority or*great est Priority respectiely. See
cudaStreamCreateWithPriority for details on creating a priority stream. A NULL may be passed in
for*l eastPriorityor*greatestPriority ifthe value is not desired.

This function will return '0’ in botht | east Pri ority and*great est Pri ori ty if the current
contexts device does not support stream priorities (segaDeviceGetAttribute).

Parameters:
leastPriority - Pointer to an int in which the numerical value for least stream priority is returned
greatestPriority- Pointer to an int in which the numerical value for greatest stream priority is
returned

Returns:
cudaSuccesscudaErrorin validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreateWithPriority, cudaStreamGetPriority

cudaError_t cudaDeviceReset (void)
Explicitly destroys and cleans up all resources associated with the current device in the current process.
Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediatklis the callers responsibility to ensure that
the device is not being accessed by ather host threads from the process when this function is called.

Returns:
cudaSuccess

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSynchronize

cudaError_t cudaDeviceSetCacheConfig (enum cudaFuncCache cacheConfig)
On devices where the L1 cache and shared memory use the same hardware resources, this sets through
cacheConfi g the preferred cache configuration for the current device. This is only a preference. The
runtime will use the requested configuration if possible, but it is free to choose a different configuration
if required to &ecute the function. Apfunction preference set vimdaFuncSetCacheConfig (C
API) or cudaFuncSetCacheConfig (C++ APIill be preferred wer this device-wide setting. Setting
the device-wide cache configurationctedaFuncCachePreferNonewill cause subsequent kernel
launches to prefer to not change the cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a
device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNoneno preference for shared memory or L1 (default)

» cudaFuncCachePreferSharedprefer larger shared memory and smaller L1 cache
» cudaFuncCachePreferL1 prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual prefer equal size L1 cache and shared memory

Parameters:
cacheConfig Requested cache configuration

Version 6.0 1 Apr 2014 7

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)
Returns:
cudaSuccesscudaErrorlnitializationError
Note:
Note that this function may also return error codes from previous, asynchronous launches.
See also:
cudaDeviceGetCacheConfigcudaFuncSetCacheConfig (C APl)cudaFuncSetCacheConfig
(C++ API)

cudaError_t cudaDeviceSetLimit (enum cudaLimit limit, size_t value)
Settingl i m t toval ue is a request by the application to update the current limit maintained by the
device. The dvier is free to modify the requested value to meet h/w requirements (this could be
clamping to minimum or maximum values, rounding up to nearest element size, etc). The application
can useudaDeviceGetLimit() to find out exactly what the limit has been set to.

Setting eacleudalLimit has its own specific restrictions, so each is discussed here.

» cudaLimitStackSize controls the stack size in bytes of each GPU thread. This limit is only
applicable to devices of compute capability 2.0 and higktegmpting to set this limit on devices of
compute capability less than 2.0 will result in the ectataErrorUnsupportedLimit being
returned.

» cudaLimitPrintfFifoSize controls the size in bytes of the shared FIFO used by the printf() and
fprintf() device system calls. SettimgdaLimitPrintfFifoSize must be performed before launching
ary kernel that uses the printf() or fprintf() device system calls, othexmidaErrorin validValue
will be returned. This limit is only applicable to devices of compute capability 2.0 and higher.
Attempting to set this limit on devices of compute capability less than 2.0 will result in the error
cudaErrorUnsupportedLimit being returned.

» cudaLimitMallocHeapSize controls the size in bytes of the heap used by the malloc() and free()
device system calls. SettimgdaLimitMallocHeapSize must be performed before launching any
kernel that uses the malloc() or free() device system calls, othezudis=rrorin validValue will be
returned. This limit is only applicable to devices of compute capability 2.0 and.hMgtenpting to
set this limit on devices of compute capability less than 2.0 will result in the error
cudaErrorUnsupportedLimit being returned.

 cudaLimitDevRuntimeSyncDepthcontrols the maximum nesting depth of a grid at which a thread
can safely caltudaDeviceSynchronize()Setting this limit must be performed beforeydaunch of
a kernel that uses the device runtime and caltfaDeviceSynchronize(abore the default sync
depth, tvo levds of grids. Calls teudaDeviceSynchronize(ill fail with error code
cudaErrorSyncDepthExceededf the limitation is violated. This limit can be set smaller than the
default or up the maximum launch depth of 24. When setting this limit, keep in mind that additional
levels of sync depth require the runtime to resdarge amounts of device memory which can no
longer be used for user allocations. If these reservations of device memaydalDeviceSetLimit
will return cudaErrorMemoryAllocation , and the limit can be reset to a lower value. This limit is
only applicable to devices of compute capability 3.5 and higttesmpting to set this limit on
devices of compute capability less than 3.5 will result in the eadaErrorUnsupportedLimit
being returned.

 cudaLimitDevRuntimePendingLaunchCountcontrols the maximum number of outstanding
device runtime launches that can be made from the current device. A grid is outstanding from the
point of launch up until the grid is known toveadbeen completed. Device runtime launches which
violate this limitation fail and returoudaErrorLaunchPendingCountExceededwhen
cudaGetLastError() is called after launch. If more pending launches than the default (2048
launches) are needed for a module using the device runtime, this limit can be increased. Keep in
mind that being able to sustain additional pending launches will require the runtime te laggwv
amounts of device memory upfront which can no longer be used for allocations. If these reservations
fail, cudaDeviceSetLimitwill return cudaErrorMemoryAllocation , and the limit can be reset to a
lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the error
cudaErrorUnsupportedLimit being returned.

Parameters:
limit - Limit to set

Version 6.0 1 Apr 2014 8

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

value- Size of limit

Returns:
cudaSuccesscudaErrorUnsupportedLimit , cudaErrorin validValue,
cudaErrorMemoryAllocation

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetLimit

cudaError_t cudaDeviceSetSharedMemConfig (enum cudaSharedMemConfig config)
On devices with configurable shared memory banks, this function will set the shared memory bank size
which is used for all subsequent kernel launchey.gn-function setting of shared memory set via
cudaFuncSetSharedMemConfigvill override the device wide setting.

Changing the shared memory configuration between launches may introduce a device side
synchronization point.

Changing the shared memory bank size will not increase shared memory usage or affectypotupanc
kernels, but may ha major effects on performance. Larger bank sizes willaflor greater potential
bandwidth to shared memeotyut will change what kinds of accesses to shared memory will result in
bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.

The supported bank configurations are:

» cudaSharedMemBankSizeDefault: set bank width the device default (curfentlipytes)

» cudaSharedMemBankSizeFourByte: set shared memory bank width to be four byahg nati
» cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight byéhs nati

Parameters:
config- Requested cache configuration

Returns:
cudaSuccesscudaErrorin validValue, cudaErrorlnitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfigudaDeviceGetCacheConfigcudaDeviceGetSharedMemConfig
cudaFuncSetCacheConfig

__cudart_builtin__ cudaError_t cudaDeviceSynchronize (void)
Blocks until the device has completed all preceding requested taslkedeviceSynchronize(yeturns
an error if one of the preceding tasks has failed. IEtltmDeviceScheduleBlockingSynftag was set
for this device, the host thread will block until the device has finished its work.

Returns:
cudaSuccess

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceReset

__cudart_builtin__ cudaError_t cudaGetDevice (int * device)
Returns it devi ce the current device for the calling host thread.

Parameters:
device- Returns the device on which the &etiost thread xecutes the device code.

Returns:
cudaSuccess

Note:

Version 6.0 1 Apr 2014 9

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCountcudaSetDevicecudaGetDevicePropertiescudaChooseDevice

__cudart_builtin__ cudaError_t cudaGetDeviceCount (int * count)
Returns it count the number of devices with compute capability greater or equal to 1.0 that are
awailable for eecution. If there is no such device theudaGetDeviceCount(will return
cudaErrorNoDevice. If no driver can be loaded to determine ifyaguch devices exist then
cudaGetDeviceCount(will return cudaErrorinsufficientDri ver.

Parameters:
count- Returns the number of devices with compute capability greater or equal to 1.0

Returns:
cudaSuccesscudaErrorNoDevice, cudaErrorinsufficientDri ver

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDevice cudaSetDevicecudaGetDevicePropertiescudaChooseDevice

__cudart_builtin__ cudaError_t cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device)
Returns it pr op the properties of deviadev. The cudaDevicePropstructure is defined as:

struct cudaDeviceProp {
char name[256];
size_t totalGlobalMem;
size_t sharedMemPerBlock;
int regsPerBlock;
int warpSize;
size_t mempPitch;
int maxThreadsPerBlock;
int maxThreadsDim([3];
int maxGridSize[3];
int clockRate;
size_t totalConstMem;
int major;
int minor;
size_t textureAlignment;
size_t texturePitchAlignment;
int deviceOverlap;
int multiProcessorCount;
int kernelExecTimeoutEnabled;
int integrated,;
int canMapHostMemory;
int computeMode;
int maxTexturel1D;
int maxTexturelDMipmap;
int maxTexturelDLinear;
int maxTexture2D[2];
int maxTexture2DMipmap[2];
int maxTexture2DLinear[3];
int maxTexture2DGather[2];
int maxTexture3D[3];
int maxTexture3DAIt[3];
int maxTextureCubemap;
int maxTexturelDLayered[2];
int maxTexture2DLayered[3];
int maxTextureCubemaplLayered|[2];
int maxSurfacelD;
int maxSurface2D[2];

Version 6.0 1 Apr 2014 10

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

int maxSurface3D[3];

int maxSurfacelDLayered[2];

int maxSurface2DLayered[3];

int maxSurfaceCubemap;

int maxSurfaceCubemapLayered[2];
size_t surfaceAlignment;

int concurrentKernels;

int ECCEnabled,;

int pciBusID;

int pciDevicelD;

int pciDomainliD;

int tccDriver;

int asyncEngineCount;

int unifiedAddressing;

int memoryClockRate;

int memoryBusWidth;

int [2CacheSize;

int maxThreadsPerMultiProcessor;
int streamPrioritiesSupported;

int globalL1CacheSupported,;

int localL1CacheSupported;

size_t sharedMemPerMultiprocessor;
int regsPerMultiprocessor;

int managedMemSupported,;

int isMultiGpuBoard;

int multiGpuBoardGrouplID;

where:

name[256]is an ASCII string identifying the device;
totalGlobalMem is the total amount of global memoryadable on the device in bytes;

sharedMemPerBlockis the maximum amount of shared memarsilable to a thread block in
bytes;

regsPerBlockis the maximum number of 32-bit registevsikble to a thread block;
warpSizeis the warp size in threads;

memPitchis the maximum pitch in bytes allowed by the memorydopctions that imolve
memory regions allocated throughdaMallocPitch();

maxThreadsPerBlockis the maximum number of threads per block;

maxThreadsDim[3] contains the maximum size of each dimension of a block;
maxGridSize[3] contains the maximum size of each dimension of a grid;

clockRateis the clock frequencin kilohertz;

totalConstMem is the total amount of constant memowgikable on the device in bytes;

major, minor are the major and minor revision numbers defining the dewiogipute capability;

textureAlignment is the alignment requirement; texture base addresses that are aligned to
textureAlignment bytes do not need an offset applied to texture fetches;

texturePitchAlignment is the pitch alignment requirement for 2D texture references that are bound
to pitched memory;

deviceOverlapis 1 if the device can concurrently gomemory between host and device while
executing a kernel, or 0 if not. Deprecated, use instead asyncEngineCount.

multiProcessorCountis the number of multiprocessors on the device;

Version 6.0 1 Apr 2014 11

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

kernelExecTimeoutEnabledis 1 if there is a run time limit for kernelseeuted on the device, or O
if not.

integrated is 1 if the device is an integrated (motherboard) GPU and O if it is a discrete (card)
component.

» canMapHostMemory is 1 if the device can map host memory into the @ldddress space for use
with cudaHostAlloc(YcudaHostGetDevicePointer()or O if not;

» computeModeis the compute mode that the device is currently vailable modes are as follows:

¢ cudaComputeModeDefault: Default mode - Device is not restricted and multiple threads can use
cudaSetDevice(with this device.

¢ cudaComputeModeExclug: Compute-exclusie node - Only one thread will be able to use
cudaSetDevice(with this device.

¢ cudaComputeModeProhibited: Compute-prohibited mode - No threads candasetDevice()
with this device.

¢ cudaComputeModeExclugProcess: Compute-exclusiprocess mode - Marthreads in one
process will be able to usedaSetDevice(Wwith this device.

If cudaSetDevice()s called on an already occupigdvi ce with computeMode
cudaComputeModeExclusve, cudaErrorDeviceAlreadylnUse will be immediately returned
indicating the device cannot be used. When an occupied exchasie device is chosen with
cudaSetDevicedl subsequent non-device management runtime functions will return
cudaErrorDevicesUnavailable.

* maxTexturelDis the maximum 1D texture size.

» maxTexturelDMipmap is the maximum 1D mipmapped texture texture size.

» maxTexturelDLinear is the maximum 1D texture size for textures bound to linear memory.
» maxTexture2D[2] contains the maximum 2D texture dimensions.

» maxTexture2DMipmap[2] contains the maximum 2D mipmapped texture dimensions.

» maxTexture2DLinear[3] contains the maximum 2D texture dimensions for 2D textures bound to
pitch linear memory.

» maxTexture2DGather[2] contains the maximum 2D texture dimensions if texture gather operations
have © be gerformed.

» maxTexture3D[3] contains the maximum 3D texture dimensions.

» maxTexture3DAIt[3] contains the maximum alternate 3D texture dimensions.

» maxTextureCubemapis the maximum cubemap texture width or height.

» maxTexturelDLayered[2] contains the maximum 1D layered texture dimensions.

» maxTexture2DLayered[3] contains the maximum 2D layered texture dimensions.

» maxTextureCubemapLayered[2]contains the maximum cubemap layered texture dimensions.
» maxSurfacelDis the maximum 1D surface size.

» maxSurface2D[2]contains the maximum 2D surface dimensions.

» maxSurface3D[3]contains the maximum 3D surface dimensions.

» maxSurfacelDLayered[2]contains the maximum 1D layered surface dimensions.

» maxSurface2DLayered[3]contains the maximum 2D layered surface dimensions.

» maxSurfaceCubemapis the maximum cubemap surface width or height.

» maxSurfaceCubemapLayered[2]contains the maximum cubemap layered surface dimensions.
 surfaceAlignmentspecifies the alignment requirements for surfaces.

» concurrentKernelsis 1 if the device supportxecuting multiple kernels within the same context
simultaneouslyor 0 if not. It is not guaranteed that multiple kernels will be resident on the device
concurrently so this feature should not be relied upon for correctness;

Version 6.0 1 Apr 2014 12

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

» ECCEnabledis 1 if the device has ECC support turned on, or O if not.

» pciBusID is the PCI bus identifier of the device.

» pciDevicelDis the PCI device (sometimes called slot) identifier of the device.
e pciDomainID is the PCI domain identifier of the device.

« tccDriver is 1 if the device is using a TCC aa or O if not.

» asyncEngineCountis 1 when the device can concurrently gommory between host and device
while executing a kernel. It is 2 when the device can concurrently owmory between host and
device in both directions andeeute a kernel at the same time. It is O if neither of these is supported.

« unifiedAddressingis 1 if the device shares a unified address space with the host and 0 otherwise.
» memoryClockRateis the peak memory clock frequeria kilohertz.

» memoryBusWidth is the memory bus width in bits.

» |2CacheSizds L2 cache size in bytes.

» maxThreadsPerMultiProcessoris the number of maximum resident threads per multiprocessor.
 streamPrioritiesSupportedis 1 if the device supports stream priorities, or O if it is not supported.

 globalL1CacheSupportedis 1 if the device supports caching of globals in L1 cache, or O if it is not
supported.

* localL1CacheSupportedis 1 if the device supports caching of locals in L1 cache, or O if it is not
supported.

» sharedMemPerMultiprocessoris the maximum amount of shared memaursilable to a
multiprocessor in bytes; this amount is shared by all thread blocks simultaneously resident on a
multiprocessor;

 regsPerMultiprocessoris the maximum number of 32-bit registevsikable to a multiprocessor;
this number is shared by all thread blocks simultaneously resident on a multiprocessor;

» managedMemSupporteds 1 if the device supports allocating managed mepoord if it is not
supported.

 isMultiGpuBoard is 1 if the device is on a multi-GPU board (e.g. Gemini cards), and O if not;

» multiGpuBoardGrouplD is a unique identifier for a group of devices associated with the same
board. Devices on the same multi-GPU board will share the same identifier;

Parameters:
prop - Properties for the specified device
device- Device number to get properties for

Returns:
cudaSuccesscudaErrorin validDevice

See also:
cudaGetDeviceCountcudaGetDevice cudaSetDevicecudaChooseDevice
cudaDeviceGetAttribute

cudaError_t cudalpcCloseMemHandle (void * devPtr)
Unmaps memory returnd lyudalpcOpenMemHandle The original allocation in the exporting
process as well as imported mappings in other processes will be unaffected.

Any resources used to enable peer access will be freed if this is the last mapping using them.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
devPtr- Device pointer returned bgudalpcOpenMemHandle

Returns:
cudaSuccesscudaErrorMapBufferObjectFailed , cudaErrorin validResourceHandlg

See also:
cudaMalloc, cudaFreg cudalpcGetEventHandle cudalpcOpenEventHandle

Version 6.0 1 Apr 2014 13

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

cudalpcGetMemHandle, cudalpcOpenMemHandle

cudaError_t cudalpcGetEventHandle (cudalpcEventHandle_t * handle, cudaEvent_twent)
Takes as nput a previously allocatedrent. This &ent must hae been created with the
cudaEventinterprocessandcudaEventDisableTimingflags set. This opaque handle may be copied
into other processes and opened witdalpcOpenEventHandleto allow efficient hardware
synchronization between GPU work in different processes.

After the erent has been been opened in the importing processEventRecord
cudaEventSynchronize cudaStreamWaitEventandcudaEventQuerymay be used in either process.
Performing operations on the importada after the exportedvent has been freed with
cudaEventDestroywill result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
handle- Pointer to a user allocated cudalpcEventHandle in which to return the opeatie e
handle
ewent- Event allocated witttudaEventinterprocessandcudaEventDisableTimingflags.

Returns:
cudaSuccesscudaErrorin validResourceHandle cudaErrorMemoryAllocation ,
cudaErrorMapBufferObjectFailed

See also:
cudaEventCreate cudaEventDestroy cudaEventSynchronize cudaEventQuery,
cudaStreamWaitEvent cudalpcOpenEventHandle cudalpcGetMemHandle,
cudalpcOpenMemHandle cudalpcCloseMemHandle

cudaError_t cudalpcGetMemHandle (cudalpcMemHandle_t * handle, void * devPtr)
Takes a minter to the base of an existing device memory allocation createdwdtiMalloc and
exports it for use in another process. This is a lightweight operation and may be called multiple times
on an allocation without adverse effects.

If a region of memory is freed wittudaFreeand a subsequent call¢cadaMalloc returns memory
with the same device addresadalpcGetMemHandlewill return a unique handle for the new
memory.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
handle- Pointer to user allocated cudalpcMemHandle to return the handle in.
devPtr- Base pointer to previously allocated device memory

Returns:
cudaSuccesscudaErrorin validResourceHandle cudaErrorMemoryAllocation ,
cudaErrorMapBufferObjectFailed ,

See also:
cudaMalloc, cudaFreg cudalpcGetEventHandle cudalpcOpenEventHandle
cudalpcOpenMemHandle cudalpcCloseMemHandle

cudaError_t cudalpcOpenEventHandle (cudaEvent_t * @ent, cudalpcEventHandle_t handle)
Opens an interprocesgant handle exported from another process witalpcGetEventHandle
This function returns audaEvent_tthat behses like a bcally createdent with the
cudaEventDisableTimingflag specified. Thisvent must be freed witbudaEventDestroy

Performing operations on the importada after the exportedvent has been freed with
cudaEventDestroywill result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
ewent- Returns the importedvent
handle- Interprocess handle to open

Version 6.0 1 Apr 2014 14

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

Returns:
cudaSuccesscudaErrorMapBufferObjectFailed , cudaErrorin validResourceHandle

See also:
cudaEventCreate cudaEventDestroy cudaEventSynchronize cudaEventQuery,
cudaStreamWaitEvent cudalpcGetEventHandlg cudalpcGetMemHandle
cudalpcOpenMemHandleg cudalpcCloseMemHandle

cudaError_t cudalpcOpenMemHandle (void ** devPtr, cudalpcMemHandle_t handle, unsigned int
flags)
Maps memory exported from another process wiitthalpcGetMemHandleinto the current device
address space. For contexts on different dewgdalpcOpenMemHandlecan attempt to enable peer
access between the devices as if the user caligaDeviceEnablePeerAcces3his behavior is
controlled by theudalpcMemLazyEnablePeerAccesflag. cudaDeviceCanAccessPe@&an
determine if a mapping is possible.

Contexts that may open cudalpcMemHandles are restricted in the followingusdajpcMemHandles
from each device in agn process may only be opened by one context per device per other process.

Memory returned froncudalpcOpenMemHandlemust be freed witkudalpcCloseMemHandle

Calling cudaFreeon an exported memory region before callinglalpcCloseMemHandlein the
importing context will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
devPtr- Returned device pointer
handle- cudalpcMemHandle to open
flags- Flags for this operation. Must be specifieccadalpcMemLazyEnablePeerAccess

Returns:
cudaSuccesscudaErrorMapBufferObjectFailed , cudaErrorin validResourceHandlg
cudaErrorTooManyPeers

Note:
No guarantees are made about the address returhdeéwPt r . In particular multiple processes
may not receie the same address for the samaad| e.

See also:
cudaMalloc, cudaFreg cudalpcGetEventHandle cudalpcOpenEventHandle
cudalpcGetMemHandle, cudalpcCloseMemHandle cudaDeviceEnablePeerAccess
cudaDeviceCanAccessPegr

cudaError_t cudaSetDevice (int device)
Setsdevi ce as the current device for the calling host thread. Valid devisexigl0 to
(cudaGetDeviceCount() 1).

Any device memory subsequently allocated from this host thread ostegMalloc(),

cudaMallocPitch() or cudaMallocArray() will be physically resident odevi ce. Any host memory
allocated from this host thread usioigdaMallocHost() or cudaHostAlloc() or cudaHostRegister()

will have its lifetime associated witthevi ce. Any sreams or gents created from this host thread will
be associated wittievi ce. Any kernels launched from this host thread using the <<<>>> operator or
cudaLaunch() will be executed ondevi ce.

This call may be made fromyhost thread, to andevice, and at antime. This function will do no
synchronization with the previous onmeéevice, and should be considered a very twerhead call.

Parameters:
device- Device on which the acte host thread shouldxecute the device code.

Returns:
cudaSuccesscudaErrorin validDevice, cudaErrorDeviceAlreadylnUse

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

Version 6.0 1 Apr 2014 15

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

cudaGetDeviceCountcudaGetDevice cudaGetDevicePropertiescudaChooseDevice

cudaError_t cudaSetDeviceFlags (unsigned int flags)
Recordd | ags as the flags to use when initializing the current device. If no device has been made
current to the calling thread théhags will be applied to the initialization of grdevice initialized by
the calling host thread, unless that device has had its initialization flags set explicitly by tyibastan
thread.

If the current device has been set and that device has already been initialized then this call will fail with
the errorcudaErrorSetOnActiveProcess In this case it is necessary to redeti ce using
cudaDeviceReset(pefore the devicg'initialization flags may be set.

The two LSBs of thef | ags parameter can be used to contraivtthe CPU thread interacts with the
OS scheduler when waiting for results from the device.

» cudaDeviceScheduleAutoThe default value if thél ags parameter is zero, uses a heuristic based
on the number of aste AQUDA contexts in the processand the number of logical processors in the
systemP. If C> P, then CUDA will yield to other OS threads when waiting for the device, otherwise
CUDA will not yield while waiting for results and aedly spin on the processor.

» cudaDeviceScheduleSpirinstruct CUIA to actively spin when waiting for results from the device.
This can decrease latgnwhen waiting for the device, but may lower the performance of CPU
threads if thg are performing work in parallel with the CU{xhread.

» cudaDeviceScheduleYieldinstruct CUIA to yield its thread when waiting for results from the
device. This can increase latgmehen waiting for the device, but can increase the performance of
CPU threads performing work in parallel with the device.

» cudaDeviceScheduleBlockingSyndnstruct CUIA to block the CPU thread on a synchronization
primitive when waiting for the device to finish work.

» cudaDeviceBlockingSynclnstruct CUIA to block the CPU thread on a synchronization priveiti
when waiting for the device to finish work.
Deprecated:This flag was deprecated as of CAB.0 and replaced with
cudaDeviceScheduleBlockingSync

» cudaDeviceMapHost This flag must be set in order to allocate pinned host memory that is
accessible to the device. If this flag is not setlaHostGetDevicePointer(will always return a
failure code.

» cudaDeviceLmemResizeToMaxinstruct CUIA to not reduce local memory after resizing local
memory for a kernel. This can peat thrashing by local memory allocations when launching many
kernels with high local memory usage at the cost of potentially increased memory usage.

Parameters:
flags- Parameters for device operation

Returns:
cudaSuccesscudaErrorin validDevice, cudaErrorSetOnActiveProcess

See also:
cudaGetDeviceCountcudaGetDevice cudaGetDevicePropertiescudaSetDevice
cudaSetValidDevicescudaChooseDevice

cudaError_t cudaSetValidDevices (int * device_aryint len)
Sets a list of devices for CUDexecution in priority order usindevi ce_ar r . The parametdren
specifies the number of elements in the list. @U@l try devices from the list sequentially until it
finds one that works. If this function is not called, or if it is called witlea of 0, then CUIA will go
back to its default behavior of trying devices sequentially from a default list containing all of the
awailable CUDA devices in the system. If a specified device ID in the list does not exist, this function
will return cudaErrorin validDevice. If | en is not 0 andlevi ce_arr is NULL or if | en exceeds
the number of devices in the system, thedaErrorin validValue is returned.

Parameters:
device_arr- List of devices to try
len- Number of devices in specified list

Returns:

Version 6.0 1 Apr 2014 16

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Ubuntu 14.10 (Utopic Unicorn) man.m.sourcentral.org

Device Management(3) Doxygen Deice Management(3)

cudaSuccesscudaErrorin validValue, cudaErrorin validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCountcudaSetDevicecudaGetDevicePropertiescudaSetDeviceFlags
cudaChooseDevice

Author
Generated automatically by Doxygen from the source code.

Version 6.0 1 Apr 2014 17

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

