
Device Management(3) Doxygen Device Management(3)

NAME
Device Management −

Functions
cudaError_t cudaChooseDevice(int *device, const structcudaDeviceProp*prop)

Select compute-device which best matches criteria.
__cudart_builtin__cudaError_t cudaDeviceGetAttribute (int *value, enumcudaDeviceAttr attr, int

device)
Returns information about the device.

cudaError_t cudaDeviceGetByPCIBusId(int *device, const char *pciBusId)
Returns a handle to a compute device.

__cudart_builtin__cudaError_t cudaDeviceGetCacheConfig(enumcudaFuncCache
*pCacheConfig)
Returns the preferred cache configuration for the current device.

__cudart_builtin__cudaError_t cudaDeviceGetLimit (size_t *pValue, enumcudaLimit limit)
Returns resource limits.

cudaError_t cudaDeviceGetPCIBusId(char *pciBusId, int len, int device)
Returns a PCI Bus Id string for the device.

__cudart_builtin__cudaError_t cudaDeviceGetSharedMemConfig(enumcudaSharedMemConfig
*pConfig)
Returns the shared memory configuration for the current device.

__cudart_builtin__cudaError_t cudaDeviceGetStreamPriorityRange(int *leastPriority, int
*greatestPriority)
Returns numerical values that correspond to the least and greatest stream priorities.

cudaError_t cudaDeviceReset(void)
Destroy all allocations and reset all state on the current device in the current process.

cudaError_t cudaDeviceSetCacheConfig(enumcudaFuncCachecacheConfig)
Sets the preferred cache configuration for the current device.

cudaError_t cudaDeviceSetLimit (enumcudaLimit limit, size_t value)
Set resource limits.

cudaError_t cudaDeviceSetSharedMemConfig(enumcudaSharedMemConfigconfig)
Sets the shared memory configuration for the current device.

__cudart_builtin__cudaError_t cudaDeviceSynchronize(void)
Wait for compute device to finish.

__cudart_builtin__cudaError_t cudaGetDevice(int *device)
Returns which device is currently being used.

__cudart_builtin__cudaError_t cudaGetDeviceCount(int *count)
Returns the number of compute-capable devices.

__cudart_builtin__cudaError_t cudaGetDeviceProperties(structcudaDeviceProp*prop, int
device)
Returns information about the compute-device.

cudaError_t cudaIpcCloseMemHandle(void *devPtr)
Close memory mapped with cudaIpcOpenMemHandle.

cudaError_t cudaIpcGetEventHandle (cudaIpcEventHandle_t*handle,cudaEvent_tev ent)
Gets an interprocess handle for a previously allocated event.

cudaError_t cudaIpcGetMemHandle (cudaIpcMemHandle_t *handle, void *devPtr)
Gets an interprocess memory handle for an existing device memory allocation.

cudaError_t cudaIpcOpenEventHandle (cudaEvent_t*event, cudaIpcEventHandle_thandle)
Opens an interprocess event handle for use in the current process.

cudaError_t cudaIpcOpenMemHandle (void **devPtr,cudaIpcMemHandle_thandle, unsigned int
flags)
Opens an interprocess memory handle exported from another process and returns a device
pointer usable in the local process.

cudaError_t cudaSetDevice(int device)
Set device to be used for GPU executions.

cudaError_t cudaSetDeviceFlags(unsigned int flags)
Sets flags to be used for device executions.

cudaError_t cudaSetValidDevices(int *device_arr, int len)
Set a list of devices that can be used for CUDA.

Version 6.0 1 Apr 2014 1

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

Detailed Description
CUDART_DEVICE

\brief device management functions of the CUDA runtime API (cuda_runtime_api.h)

This section describes the device management functions of the CUDA runtime application
programming interface.

Function Documentation
cudaError_t cudaChooseDevice (int * device, const struct cudaDeviceProp * prop)

Returns in*device the device which has properties that best match*prop.

Parameters:
device- Device with best match
prop - Desired device properties

Returns:
cudaSuccess, cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties

__cudart_builtin__ cudaError_t cudaDeviceGetAttribute (int * value, enum cudaDeviceAttr attr, int
device)
Returns in*value the integer value of the attributeattr on devicedevice. The supported
attributes are:

• cudaDevAttrMaxThreadsPerBlock: Maximum number of threads per block;

• cudaDevAttrMaxBlockDimX : Maximum x-dimension of a block;

• cudaDevAttrMaxBlockDimY : Maximum y-dimension of a block;

• cudaDevAttrMaxBlockDimZ : Maximum z-dimension of a block;

• cudaDevAttrMaxGridDimX : Maximum x-dimension of a grid;

• cudaDevAttrMaxGridDimY : Maximum y-dimension of a grid;

• cudaDevAttrMaxGridDimZ : Maximum z-dimension of a grid;

• cudaDevAttrMaxSharedMemoryPerBlock: Maximum amount of shared memory available to a
thread block in bytes;

• cudaDevAttrTotalConstantMemory: Memory available on device for __constant__ variables in a
CUDA C kernel in bytes;

• cudaDevAttrWarpSize: Warp size in threads;

• cudaDevAttrMaxPitch : Maximum pitch in bytes allowed by the memory copy functions that
involve memory regions allocated throughcudaMallocPitch();

• cudaDevAttrMaxTexture1DWidth: Maximum 1D texture width;

• cudaDevAttrMaxTexture1DLinearWidth : Maximum width for a 1D texture bound to linear
memory;

• cudaDevAttrMaxTexture1DMipmappedWidth : Maximum mipmapped 1D texture width;

• cudaDevAttrMaxTexture2DWidth: Maximum 2D texture width;

• cudaDevAttrMaxTexture2DHeight: Maximum 2D texture height;

• cudaDevAttrMaxTexture2DLinearWidth : Maximum width for a 2D texture bound to linear
memory;

• cudaDevAttrMaxTexture2DLinearHeight : Maximum height for a 2D texture bound to linear
memory;

• cudaDevAttrMaxTexture2DLinearPitch : Maximum pitch in bytes for a 2D texture bound to linear
memory;

Version 6.0 1 Apr 2014 2

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

• cudaDevAttrMaxTexture2DMipmappedWidth : Maximum mipmapped 2D texture width;

• cudaDevAttrMaxTexture2DMipmappedHeight: Maximum mipmapped 2D texture height;

• cudaDevAttrMaxTexture3DWidth: Maximum 3D texture width;

• cudaDevAttrMaxTexture3DHeight: Maximum 3D texture height;

• cudaDevAttrMaxTexture3DDepth: Maximum 3D texture depth;

• cudaDevAttrMaxTexture3DWidthAlt : Alternate maximum 3D texture width, 0 if no alternate
maximum 3D texture size is supported;

• cudaDevAttrMaxTexture3DHeightAlt : Alternate maximum 3D texture height, 0 if no alternate
maximum 3D texture size is supported;

• cudaDevAttrMaxTexture3DDepthAlt : Alternate maximum 3D texture depth, 0 if no alternate
maximum 3D texture size is supported;

• cudaDevAttrMaxTextureCubemapWidth : Maximum cubemap texture width or height;

• cudaDevAttrMaxTexture1DLayeredWidth : Maximum 1D layered texture width;

• cudaDevAttrMaxTexture1DLayeredLayers: Maximum layers in a 1D layered texture;

• cudaDevAttrMaxTexture2DLayeredWidth : Maximum 2D layered texture width;

• cudaDevAttrMaxTexture2DLayeredHeight: Maximum 2D layered texture height;

• cudaDevAttrMaxTexture2DLayeredLayers: Maximum layers in a 2D layered texture;

• cudaDevAttrMaxTextureCubemapLayeredWidth: Maximum cubemap layered texture width or
height;

• cudaDevAttrMaxTextureCubemapLayeredLayers: Maximum layers in a cubemap layered
texture;

• cudaDevAttrMaxSurface1DWidth: Maximum 1D surface width;

• cudaDevAttrMaxSurface2DWidth: Maximum 2D surface width;

• cudaDevAttrMaxSurface2DHeight: Maximum 2D surface height;

• cudaDevAttrMaxSurface3DWidth: Maximum 3D surface width;

• cudaDevAttrMaxSurface3DHeight: Maximum 3D surface height;

• cudaDevAttrMaxSurface3DDepth: Maximum 3D surface depth;

• cudaDevAttrMaxSurface1DLayeredWidth: Maximum 1D layered surface width;

• cudaDevAttrMaxSurface1DLayeredLayers: Maximum layers in a 1D layered surface;

• cudaDevAttrMaxSurface2DLayeredWidth: Maximum 2D layered surface width;

• cudaDevAttrMaxSurface2DLayeredHeight: Maximum 2D layered surface height;

• cudaDevAttrMaxSurface2DLayeredLayers: Maximum layers in a 2D layered surface;

• cudaDevAttrMaxSurfaceCubemapWidth: Maximum cubemap surface width;

• cudaDevAttrMaxSurfaceCubemapLayeredWidth: Maximum cubemap layered surface width;

• cudaDevAttrMaxSurfaceCubemapLayeredLayers: Maximum layers in a cubemap layered
surface;

• cudaDevAttrMaxRegistersPerBlock: Maximum number of 32-bit registers available to a thread
block;

• cudaDevAttrClockRate: Peak clock frequency in kilohertz;

• cudaDevAttrTextureAlignment : Alignment requirement; texture base addresses aligned to
textureAlign bytes do not need an offset applied to texture fetches;

• cudaDevAttrTexturePitchAlignment : Pitch alignment requirement for 2D texture references bound
to pitched memory;

• cudaDevAttrGpuOverlap: 1 if the device can concurrently copy memory between host and device
while executing a kernel, or 0 if not;

Version 6.0 1 Apr 2014 3

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

• cudaDevAttrMultiProcessorCount: Number of multiprocessors on the device;

• cudaDevAttrKernelExecTimeout: 1 if there is a run time limit for kernels executed on the device,
or 0 if not;

• cudaDevAttrIntegrated: 1 if the device is integrated with the memory subsystem, or 0 if not;

• cudaDevAttrCanMapHostMemory: 1 if the device can map host memory into the CUDA address
space, or 0 if not;

• cudaDevAttrComputeMode: Compute mode is the compute mode that the device is currently in.
Av ailable modes are as follows:

• cudaComputeModeDefault: Default mode - Device is not restricted and multiple threads can use
cudaSetDevice()with this device.

• cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able to use
cudaSetDevice()with this device.

• cudaComputeModeProhibited: Compute-prohibited mode - No threads can use
cudaSetDevice()with this device.

• cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many threads in one
process will be able to usecudaSetDevice()with this device.

• cudaDevAttrConcurrentKernels: 1 if the device supports executing multiple kernels within the
same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels will be resident on
the device concurrently so this feature should not be relied upon for correctness;

• cudaDevAttrEccEnabled: 1 if error correction is enabled on the device, 0 if error correction is
disabled or not supported by the device;

• cudaDevAttrPciBusId: PCI bus identifier of the device;

• cudaDevAttrPciDeviceId: PCI device (also known as slot) identifier of the device;

• cudaDevAttrTccDri ver : 1 if the device is using a TCC driver. TCC is only available on Tesla
hardware running Windows Vista or later;

• cudaDevAttrMemoryClockRate: Peak memory clock frequency in kilohertz;

• cudaDevAttrGlobalMemoryBusWidth : Global memory bus width in bits;

• cudaDevAttrL2CacheSize: Size of L2 cache in bytes. 0 if the device doesn’t hav eL2 cache;

• cudaDevAttrMaxThreadsPerMultiProcessor: Maximum resident threads per multiprocessor;

• cudaDevAttrUnifiedAddressing: 1 if the device shares a unified address space with the host, or 0 if
not;

• cudaDevAttrComputeCapabilityMajor : Major compute capability version number;

• cudaDevAttrComputeCapabilityMinor : Minor compute capability version number;

• cudaDevAttrStreamPrioritiesSupported: 1 if the device supports stream priorities, or 0 if not;

• cudaDevAttrGlobalL1CacheSupported: 1 if device supports caching globals in L1 cache, 0 if not;

• cudaDevAttrGlobalL1CacheSupported: 1 if device supports caching locals in L1 cache, 0 if not;

• cudaDevAttrMaxSharedMemoryPerMultiprocessor: Maximum amount of shared memory
available to a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously
resident on a multiprocessor;

• cudaDevAttrMaxRegistersPerMultiprocessor: Maximum number of 32-bit registers available to a
multiprocessor; this number is shared by all thread blocks simultaneously resident on a
multiprocessor;

• cudaDevAttrManagedMemSupported: 1 if device supports allocating managed memory, 0 if not;

• cudaDevAttrIsMultiGpuBoard : 1 if device is on a multi-GPU board, 0 if not;

• cudaDevAttrMultiGpuBoardGroupID : Unique identifier for a group of devices on the same multi-
GPU board;

Parameters:

Version 6.0 1 Apr 2014 4

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

value- Returned device attribute value
attr - Device attribute to query
device- Device number to query

Returns:
cudaSuccess, cudaErrorIn validDevice, cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaGetDeviceProperties

cudaError_t cudaDeviceGetByPCIBusId (int * device, const char * pciBusId)
Returns in*device a device ordinal given a PCI bus ID string.

Parameters:
device- Returned device ordinal
pciBusId- String in one of the following forms: [domain]:[bus]:[device].[function]
[domain]:[bus]:[device] [bus]:[device].[function] wheredomain, bus, device, andfunction
are all hexadecimal values

Returns:
cudaSuccess, cudaErrorIn validValue, cudaErrorIn validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetPCIBusId

__cudart_builtin__ cudaError_t cudaDeviceGetCacheConfig (enum cudaFuncCache * pCacheConfig)
On devices where the L1 cache and shared memory use the same hardware resources, this returns
throughpCacheConfig the preferred cache configuration for the current device. This is only a
preference. The runtime will use the requested configuration if possible, but it is free to choose a
different configuration if required to execute functions.

This will return apCacheConfig of cudaFuncCachePreferNoneon devices where the size of the
L1 cache and shared memory are fixed.

The supported cache configurations are:

• cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

• cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

• cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

• cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Parameters:
pCacheConfig- Returned cache configuration

Returns:
cudaSuccess, cudaErrorInitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfig, cudaFuncSetCacheConfig (C API), cudaFuncSetCacheConfig
(C++ API)

__cudart_builtin__ cudaError_t cudaDeviceGetLimit (size_t * pValue, enum cudaLimit limit)
Returns in*pValue the current size oflimit. The supportedcudaLimit values are:

• cudaLimitStackSize: stack size in bytes of each GPU thread;

• cudaLimitPrintfFifoSize : size in bytes of the shared FIFO used by the printf() and fprintf() device
system calls.

Version 6.0 1 Apr 2014 5

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

• cudaLimitMallocHeapSize: size in bytes of the heap used by the malloc() and free() device system
calls;

• cudaLimitDevRuntimeSyncDepth: maximum grid depth at which a thread can isssue the device
runtime callcudaDeviceSynchronize()to wait on child grid launches to complete.

• cudaLimitDevRuntimePendingLaunchCount: maximum number of outstanding device runtime
launches.

Parameters:
limit - Limit to query
pValue- Returned size of the limit

Returns:
cudaSuccess, cudaErrorUnsupportedLimit , cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetLimit

cudaError_t cudaDeviceGetPCIBusId (char * pciBusId, int len, int device)
Returns an ASCII string identifying the devicedev in the NULL-terminated string pointed to by
pciBusId. len specifies the maximum length of the string that may be returned.

Parameters:
pciBusId- Returned identifier string for the device in the following format
[domain]:[bus]:[device].[function] wheredomain, bus, device, andfunction are all
hexadecimal values. pciBusId should be large enough to store 13 characters including the NULL-
terminator.
len - Maximum length of string to store inname
device- Device to get identifier string for

Returns:
cudaSuccess, cudaErrorIn validValue, cudaErrorIn validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetByPCIBusId

__cudart_builtin__ cudaError_t cudaDeviceGetSharedMemConfig (enum cudaSharedMemConfig *
pConfig)
This function will return inpConfig the current size of shared memory banks on the current device.
On devices with configurable shared memory banks,cudaDeviceSetSharedMemConfigcan be used to
change this setting, so that all subsequent kernel launches will by default use the new bank size. When
cudaDeviceGetSharedMemConfigis called on devices without configurable shared memory, it will
return the fixed bank size of the hardware.

The returned bank configurations can be either:

• cudaSharedMemBankSizeFourByte - shared memory bank width is four bytes.

• cudaSharedMemBankSizeEightByte - shared memory bank width is eight bytes.

Parameters:
pConfig- Returned cache configuration

Returns:
cudaSuccess, cudaErrorIn validValue, cudaErrorInitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceSetSharedMemConfig,
cudaFuncSetCacheConfig

Version 6.0 1 Apr 2014 6

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

__cudart_builtin__ cudaError_t cudaDeviceGetStreamPriorityRange (int * leastPriority, int *
greatestPriority)
Returns in*leastPriority and*greatestPriority the numerical values that correspond to
the least and greatest stream priorities respectively. Stream priorities follow a convention where lower
numbers imply greater priorities. The range of meaningful stream priorities is given by
[*greatestPriority, *leastPriority]. If the user attempts to create a stream with a priority
value that is outside the the meaningful range as specified by this API, the priority is automatically
clamped down or up to either*leastPriority or *greatestPriority respectively. See
cudaStreamCreateWithPriority for details on creating a priority stream. A NULL may be passed in
for *leastPriority or *greatestPriority if the value is not desired.

This function will return ’0’ in both*leastPriority and*greatestPriority if the current
context’s device does not support stream priorities (seecudaDeviceGetAttribute).

Parameters:
leastPriority- Pointer to an int in which the numerical value for least stream priority is returned
greatestPriority- Pointer to an int in which the numerical value for greatest stream priority is
returned

Returns:
cudaSuccess, cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreateWithPriority , cudaStreamGetPriority

cudaError_t cudaDeviceReset (void)
Explicitly destroys and cleans up all resources associated with the current device in the current process.
Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’s responsibility to ensure that
the device is not being accessed by any other host threads from the process when this function is called.

Returns:
cudaSuccess

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSynchronize

cudaError_t cudaDeviceSetCacheConfig (enum cudaFuncCache cacheConfig)
On devices where the L1 cache and shared memory use the same hardware resources, this sets through
cacheConfig the preferred cache configuration for the current device. This is only a preference. The
runtime will use the requested configuration if possible, but it is free to choose a different configuration
if required to execute the function. Any function preference set viacudaFuncSetCacheConfig (C
API) or cudaFuncSetCacheConfig (C++ API)will be preferred over this device-wide setting. Setting
the device-wide cache configuration tocudaFuncCachePreferNonewill cause subsequent kernel
launches to prefer to not change the cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a
device-side synchronization point.

The supported cache configurations are:

• cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

• cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

• cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

• cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Parameters:
cacheConfig- Requested cache configuration

Version 6.0 1 Apr 2014 7

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

Returns:
cudaSuccess, cudaErrorInitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetCacheConfig, cudaFuncSetCacheConfig (C API), cudaFuncSetCacheConfig
(C++ API)

cudaError_t cudaDeviceSetLimit (enum cudaLimit limit, size_t value)
Settinglimit to value is a request by the application to update the current limit maintained by the
device. The driver is free to modify the requested value to meet h/w requirements (this could be
clamping to minimum or maximum values, rounding up to nearest element size, etc). The application
can usecudaDeviceGetLimit() to find out exactly what the limit has been set to.

Setting eachcudaLimit has its own specific restrictions, so each is discussed here.

• cudaLimitStackSizecontrols the stack size in bytes of each GPU thread. This limit is only
applicable to devices of compute capability 2.0 and higher. Attempting to set this limit on devices of
compute capability less than 2.0 will result in the errorcudaErrorUnsupportedLimit being
returned.

• cudaLimitPrintfFifoSize controls the size in bytes of the shared FIFO used by the printf() and
fprintf() device system calls. SettingcudaLimitPrintfFifoSize must be performed before launching
any kernel that uses the printf() or fprintf() device system calls, otherwisecudaErrorIn validValue
will be returned. This limit is only applicable to devices of compute capability 2.0 and higher.
Attempting to set this limit on devices of compute capability less than 2.0 will result in the error
cudaErrorUnsupportedLimit being returned.

• cudaLimitMallocHeapSizecontrols the size in bytes of the heap used by the malloc() and free()
device system calls. SettingcudaLimitMallocHeapSizemust be performed before launching any
kernel that uses the malloc() or free() device system calls, otherwisecudaErrorIn validValue will be
returned. This limit is only applicable to devices of compute capability 2.0 and higher. Attempting to
set this limit on devices of compute capability less than 2.0 will result in the error
cudaErrorUnsupportedLimit being returned.

• cudaLimitDevRuntimeSyncDepthcontrols the maximum nesting depth of a grid at which a thread
can safely callcudaDeviceSynchronize(). Setting this limit must be performed before any launch of
a kernel that uses the device runtime and callscudaDeviceSynchronize()above the default sync
depth, two lev els of grids. Calls tocudaDeviceSynchronize()will fail with error code
cudaErrorSyncDepthExceededif the limitation is violated. This limit can be set smaller than the
default or up the maximum launch depth of 24. When setting this limit, keep in mind that additional
levels of sync depth require the runtime to reserve large amounts of device memory which can no
longer be used for user allocations. If these reservations of device memory fail,cudaDeviceSetLimit
will return cudaErrorMemoryAllocation , and the limit can be reset to a lower value. This limit is
only applicable to devices of compute capability 3.5 and higher. Attempting to set this limit on
devices of compute capability less than 3.5 will result in the errorcudaErrorUnsupportedLimit
being returned.

• cudaLimitDevRuntimePendingLaunchCountcontrols the maximum number of outstanding
device runtime launches that can be made from the current device. A grid is outstanding from the
point of launch up until the grid is known to have been completed. Device runtime launches which
violate this limitation fail and returncudaErrorLaunchPendingCountExceededwhen
cudaGetLastError() is called after launch. If more pending launches than the default (2048
launches) are needed for a module using the device runtime, this limit can be increased. Keep in
mind that being able to sustain additional pending launches will require the runtime to reserve larger
amounts of device memory upfront which can no longer be used for allocations. If these reservations
fail, cudaDeviceSetLimitwill return cudaErrorMemoryAllocation , and the limit can be reset to a
lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the error
cudaErrorUnsupportedLimit being returned.

Parameters:
limit - Limit to set

Version 6.0 1 Apr 2014 8

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

value- Size of limit

Returns:
cudaSuccess, cudaErrorUnsupportedLimit , cudaErrorIn validValue,
cudaErrorMemoryAllocation

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceGetLimit

cudaError_t cudaDeviceSetSharedMemConfig (enum cudaSharedMemConfig config)
On devices with configurable shared memory banks, this function will set the shared memory bank size
which is used for all subsequent kernel launches. Any per-function setting of shared memory set via
cudaFuncSetSharedMemConfigwill override the device wide setting.

Changing the shared memory configuration between launches may introduce a device side
synchronization point.

Changing the shared memory bank size will not increase shared memory usage or affect occupancy of
kernels, but may have major effects on performance. Larger bank sizes will allow for greater potential
bandwidth to shared memory, but will change what kinds of accesses to shared memory will result in
bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.

The supported bank configurations are:

• cudaSharedMemBankSizeDefault: set bank width the device default (currently, four bytes)

• cudaSharedMemBankSizeFourByte: set shared memory bank width to be four bytes natively.

• cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight bytes natively.

Parameters:
config- Requested cache configuration

Returns:
cudaSuccess, cudaErrorIn validValue, cudaErrorInitializationError

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceGetSharedMemConfig,
cudaFuncSetCacheConfig

__cudart_builtin__ cudaError_t cudaDeviceSynchronize (void)
Blocks until the device has completed all preceding requested tasks.cudaDeviceSynchronize()returns
an error if one of the preceding tasks has failed. If thecudaDeviceScheduleBlockingSyncflag was set
for this device, the host thread will block until the device has finished its work.

Returns:
cudaSuccess

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaDeviceReset

__cudart_builtin__ cudaError_t cudaGetDevice (int * device)
Returns in*device the current device for the calling host thread.

Parameters:
device- Returns the device on which the active host thread executes the device code.

Returns:
cudaSuccess

Note:

Version 6.0 1 Apr 2014 9

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice

__cudart_builtin__ cudaError_t cudaGetDeviceCount (int * count)
Returns in*count the number of devices with compute capability greater or equal to 1.0 that are
available for execution. If there is no such device thencudaGetDeviceCount()will return
cudaErrorNoDevice. If no driver can be loaded to determine if any such devices exist then
cudaGetDeviceCount()will return cudaErrorInsufficientDri ver .

Parameters:
count- Returns the number of devices with compute capability greater or equal to 1.0

Returns:
cudaSuccess, cudaErrorNoDevice, cudaErrorInsufficientDri ver

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice

__cudart_builtin__ cudaError_t cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device)
Returns in*prop the properties of devicedev. ThecudaDevicePropstructure is defined as:

struct cudaDeviceProp {
char name[256];
size_t totalGlobalMem;
size_t sharedMemPerBlock;
int regsPerBlock;
int warpSize;
size_t memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
size_t totalConstMem;
int major;
int minor;
size_t textureAlignment;
size_t texturePitchAlignment;
int deviceOverlap;
int multiProcessorCount;
int kernelExecTimeoutEnabled;
int integrated;
int canMapHostMemory;
int computeMode;
int maxTexture1D;
int maxTexture1DMipmap;
int maxTexture1DLinear;
int maxTexture2D[2];
int maxTexture2DMipmap[2];
int maxTexture2DLinear[3];
int maxTexture2DGather[2];
int maxTexture3D[3];
int maxTexture3DAlt[3];
int maxTextureCubemap;
int maxTexture1DLayered[2];
int maxTexture2DLayered[3];
int maxTextureCubemapLayered[2];
int maxSurface1D;
int maxSurface2D[2];

Version 6.0 1 Apr 2014 10

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

int maxSurface3D[3];
int maxSurface1DLayered[2];
int maxSurface2DLayered[3];
int maxSurfaceCubemap;
int maxSurfaceCubemapLayered[2];
size_t surfaceAlignment;
int concurrentKernels;
int ECCEnabled;
int pciBusID;
int pciDeviceID;
int pciDomainID;
int tccDriver;
int asyncEngineCount;
int unifiedAddressing;
int memoryClockRate;
int memoryBusWidth;
int l2CacheSize;
int maxThreadsPerMultiProcessor;
int streamPrioritiesSupported;
int globalL1CacheSupported;
int localL1CacheSupported;
size_t sharedMemPerMultiprocessor;
int regsPerMultiprocessor;
int managedMemSupported;
int isMultiGpuBoard;
int multiGpuBoardGroupID;

}

where:

• name[256]is an ASCII string identifying the device;

• totalGlobalMem is the total amount of global memory available on the device in bytes;

• sharedMemPerBlockis the maximum amount of shared memory available to a thread block in
bytes;

• regsPerBlockis the maximum number of 32-bit registers available to a thread block;

• warpSize is the warp size in threads;

• memPitch is the maximum pitch in bytes allowed by the memory copy functions that involve
memory regions allocated throughcudaMallocPitch();

• maxThreadsPerBlockis the maximum number of threads per block;

• maxThreadsDim[3] contains the maximum size of each dimension of a block;

• maxGridSize[3] contains the maximum size of each dimension of a grid;

• clockRate is the clock frequency in kilohertz;

• totalConstMem is the total amount of constant memory available on the device in bytes;

• major , minor are the major and minor revision numbers defining the device’s compute capability;

• textureAlignment is the alignment requirement; texture base addresses that are aligned to
textureAlignment bytes do not need an offset applied to texture fetches;

• texturePitchAlignment is the pitch alignment requirement for 2D texture references that are bound
to pitched memory;

• deviceOverlapis 1 if the device can concurrently copy memory between host and device while
executing a kernel, or 0 if not. Deprecated, use instead asyncEngineCount.

• multiProcessorCount is the number of multiprocessors on the device;

Version 6.0 1 Apr 2014 11

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

• kernelExecTimeoutEnabledis 1 if there is a run time limit for kernels executed on the device, or 0
if not.

• integrated is 1 if the device is an integrated (motherboard) GPU and 0 if it is a discrete (card)
component.

• canMapHostMemory is 1 if the device can map host memory into the CUDA address space for use
with cudaHostAlloc()/cudaHostGetDevicePointer(), or 0 if not;

• computeModeis the compute mode that the device is currently in. Available modes are as follows:

• cudaComputeModeDefault: Default mode - Device is not restricted and multiple threads can use
cudaSetDevice()with this device.

• cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able to use
cudaSetDevice()with this device.

• cudaComputeModeProhibited: Compute-prohibited mode - No threads can usecudaSetDevice()
with this device.

• cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many threads in one
process will be able to usecudaSetDevice()with this device.
If cudaSetDevice()is called on an already occupieddevice with computeMode
cudaComputeModeExclusive, cudaErrorDeviceAlreadyInUsewill be immediately returned
indicating the device cannot be used. When an occupied exclusive mode device is chosen with
cudaSetDevice, all subsequent non-device management runtime functions will return
cudaErrorDevicesUnavailable.

• maxTexture1D is the maximum 1D texture size.

• maxTexture1DMipmap is the maximum 1D mipmapped texture texture size.

• maxTexture1DLinear is the maximum 1D texture size for textures bound to linear memory.

• maxTexture2D[2] contains the maximum 2D texture dimensions.

• maxTexture2DMipmap[2] contains the maximum 2D mipmapped texture dimensions.

• maxTexture2DLinear[3] contains the maximum 2D texture dimensions for 2D textures bound to
pitch linear memory.

• maxTexture2DGather[2] contains the maximum 2D texture dimensions if texture gather operations
have to be performed.

• maxTexture3D[3] contains the maximum 3D texture dimensions.

• maxTexture3DAlt[3] contains the maximum alternate 3D texture dimensions.

• maxTextureCubemapis the maximum cubemap texture width or height.

• maxTexture1DLayered[2]contains the maximum 1D layered texture dimensions.

• maxTexture2DLayered[3]contains the maximum 2D layered texture dimensions.

• maxTextureCubemapLayered[2]contains the maximum cubemap layered texture dimensions.

• maxSurface1Dis the maximum 1D surface size.

• maxSurface2D[2]contains the maximum 2D surface dimensions.

• maxSurface3D[3]contains the maximum 3D surface dimensions.

• maxSurface1DLayered[2]contains the maximum 1D layered surface dimensions.

• maxSurface2DLayered[3]contains the maximum 2D layered surface dimensions.

• maxSurfaceCubemapis the maximum cubemap surface width or height.

• maxSurfaceCubemapLayered[2]contains the maximum cubemap layered surface dimensions.

• surfaceAlignmentspecifies the alignment requirements for surfaces.

• concurrentKernels is 1 if the device supports executing multiple kernels within the same context
simultaneously, or 0 if not. It is not guaranteed that multiple kernels will be resident on the device
concurrently so this feature should not be relied upon for correctness;

Version 6.0 1 Apr 2014 12

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

• ECCEnabled is 1 if the device has ECC support turned on, or 0 if not.

• pciBusID is the PCI bus identifier of the device.

• pciDeviceID is the PCI device (sometimes called slot) identifier of the device.

• pciDomainID is the PCI domain identifier of the device.

• tccDriver is 1 if the device is using a TCC driver or 0 if not.

• asyncEngineCountis 1 when the device can concurrently copy memory between host and device
while executing a kernel. It is 2 when the device can concurrently copy memory between host and
device in both directions and execute a kernel at the same time. It is 0 if neither of these is supported.

• unifiedAddressing is 1 if the device shares a unified address space with the host and 0 otherwise.

• memoryClockRate is the peak memory clock frequency in kilohertz.

• memoryBusWidth is the memory bus width in bits.

• l2CacheSizeis L2 cache size in bytes.

• maxThreadsPerMultiProcessoris the number of maximum resident threads per multiprocessor.

• streamPrioritiesSupported is 1 if the device supports stream priorities, or 0 if it is not supported.

• globalL1CacheSupportedis 1 if the device supports caching of globals in L1 cache, or 0 if it is not
supported.

• localL1CacheSupportedis 1 if the device supports caching of locals in L1 cache, or 0 if it is not
supported.

• sharedMemPerMultiprocessoris the maximum amount of shared memory available to a
multiprocessor in bytes; this amount is shared by all thread blocks simultaneously resident on a
multiprocessor;

• regsPerMultiprocessoris the maximum number of 32-bit registers available to a multiprocessor;
this number is shared by all thread blocks simultaneously resident on a multiprocessor;

• managedMemSupportedis 1 if the device supports allocating managed memory, or 0 if it is not
supported.

• isMultiGpuBoard is 1 if the device is on a multi-GPU board (e.g. Gemini cards), and 0 if not;

• multiGpuBoardGroupID is a unique identifier for a group of devices associated with the same
board. Devices on the same multi-GPU board will share the same identifier;

Parameters:
prop - Properties for the specified device
device- Device number to get properties for

Returns:
cudaSuccess, cudaErrorIn validDevice

See also:
cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaDeviceGetAttribute

cudaError_t cudaIpcCloseMemHandle (void * devPtr)
Unmaps memory returnd bycudaIpcOpenMemHandle. The original allocation in the exporting
process as well as imported mappings in other processes will be unaffected.

Any resources used to enable peer access will be freed if this is the last mapping using them.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
devPtr- Device pointer returned bycudaIpcOpenMemHandle

Returns:
cudaSuccess, cudaErrorMapBufferObjectFailed , cudaErrorIn validResourceHandle,

See also:
cudaMalloc, cudaFree, cudaIpcGetEventHandle, cudaIpcOpenEventHandle,

Version 6.0 1 Apr 2014 13

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

cudaIpcGetMemHandle, cudaIpcOpenMemHandle,

cudaError_t cudaIpcGetEventHandle (cudaIpcEventHandle_t * handle, cudaEvent_t event)
Takes as input a previously allocated event. This event must have been created with the
cudaEventInterprocessandcudaEventDisableTimingflags set. This opaque handle may be copied
into other processes and opened withcudaIpcOpenEventHandleto allow efficient hardware
synchronization between GPU work in different processes.

After the event has been been opened in the importing process,cudaEventRecord,
cudaEventSynchronize, cudaStreamWaitEventandcudaEventQuerymay be used in either process.
Performing operations on the imported event after the exported event has been freed with
cudaEventDestroywill result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
handle- Pointer to a user allocated cudaIpcEventHandle in which to return the opaque event
handle
event- Event allocated withcudaEventInterprocessandcudaEventDisableTimingflags.

Returns:
cudaSuccess, cudaErrorIn validResourceHandle, cudaErrorMemoryAllocation ,
cudaErrorMapBufferObjectFailed

See also:
cudaEventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudaIpcOpenEventHandle, cudaIpcGetMemHandle,
cudaIpcOpenMemHandle, cudaIpcCloseMemHandle

cudaError_t cudaIpcGetMemHandle (cudaIpcMemHandle_t * handle, void * devPtr)
Takes a pointer to the base of an existing device memory allocation created withcudaMalloc and
exports it for use in another process. This is a lightweight operation and may be called multiple times
on an allocation without adverse effects.

If a region of memory is freed withcudaFreeand a subsequent call tocudaMalloc returns memory
with the same device address,cudaIpcGetMemHandlewill return a unique handle for the new
memory.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
handle- Pointer to user allocated cudaIpcMemHandle to return the handle in.
devPtr- Base pointer to previously allocated device memory

Returns:
cudaSuccess, cudaErrorIn validResourceHandle, cudaErrorMemoryAllocation ,
cudaErrorMapBufferObjectFailed ,

See also:
cudaMalloc, cudaFree, cudaIpcGetEventHandle, cudaIpcOpenEventHandle,
cudaIpcOpenMemHandle, cudaIpcCloseMemHandle

cudaError_t cudaIpcOpenEventHandle (cudaEvent_t * event, cudaIpcEventHandle_t handle)
Opens an interprocess event handle exported from another process withcudaIpcGetEventHandle.
This function returns acudaEvent_tthat behaves like a locally created event with the
cudaEventDisableTimingflag specified. This event must be freed withcudaEventDestroy.

Performing operations on the imported event after the exported event has been freed with
cudaEventDestroywill result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
event- Returns the imported event
handle- Interprocess handle to open

Version 6.0 1 Apr 2014 14

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

Returns:
cudaSuccess, cudaErrorMapBufferObjectFailed , cudaErrorIn validResourceHandle

See also:
cudaEventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudaIpcGetEventHandle, cudaIpcGetMemHandle,
cudaIpcOpenMemHandle, cudaIpcCloseMemHandle

cudaError_t cudaIpcOpenMemHandle (void ** devPtr, cudaIpcMemHandle_t handle, unsigned int
flags)
Maps memory exported from another process withcudaIpcGetMemHandle into the current device
address space. For contexts on different devicescudaIpcOpenMemHandlecan attempt to enable peer
access between the devices as if the user calledcudaDeviceEnablePeerAccess. This behavior is
controlled by thecudaIpcMemLazyEnablePeerAccessflag.cudaDeviceCanAccessPeercan
determine if a mapping is possible.

Contexts that may open cudaIpcMemHandles are restricted in the following way. cudaIpcMemHandles
from each device in a given process may only be opened by one context per device per other process.

Memory returned fromcudaIpcOpenMemHandlemust be freed withcudaIpcCloseMemHandle.

CallingcudaFreeon an exported memory region before callingcudaIpcCloseMemHandlein the
importing context will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems.

Parameters:
devPtr- Returned device pointer
handle- cudaIpcMemHandle to open
flags- Flags for this operation. Must be specified ascudaIpcMemLazyEnablePeerAccess

Returns:
cudaSuccess, cudaErrorMapBufferObjectFailed , cudaErrorIn validResourceHandle,
cudaErrorTooManyPeers

Note:
No guarantees are made about the address returned in*devPtr. In particular, multiple processes
may not receive the same address for the samehandle.

See also:
cudaMalloc, cudaFree, cudaIpcGetEventHandle, cudaIpcOpenEventHandle,
cudaIpcGetMemHandle, cudaIpcCloseMemHandle, cudaDeviceEnablePeerAccess,
cudaDeviceCanAccessPeer,

cudaError_t cudaSetDevice (int device)
Setsdevice as the current device for the calling host thread. Valid device id’s are 0 to
(cudaGetDeviceCount()- 1).

Any device memory subsequently allocated from this host thread usingcudaMalloc(),
cudaMallocPitch() or cudaMallocArray() will be physically resident ondevice. Any host memory
allocated from this host thread usingcudaMallocHost()or cudaHostAlloc()or cudaHostRegister()
will have its lifetime associated withdevice. Any streams or events created from this host thread will
be associated withdevice. Any kernels launched from this host thread using the <<<>>> operator or
cudaLaunch()will be executed ondevice.

This call may be made from any host thread, to any device, and at any time. This function will do no
synchronization with the previous or new device, and should be considered a very low overhead call.

Parameters:
device- Device on which the active host thread should execute the device code.

Returns:
cudaSuccess, cudaErrorIn validDevice, cudaErrorDeviceAlreadyInUse

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

Version 6.0 1 Apr 2014 15

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties, cudaChooseDevice

cudaError_t cudaSetDeviceFlags (unsigned int flags)
Recordsflags as the flags to use when initializing the current device. If no device has been made
current to the calling thread thenflags will be applied to the initialization of any device initialized by
the calling host thread, unless that device has had its initialization flags set explicitly by this or any host
thread.

If the current device has been set and that device has already been initialized then this call will fail with
the errorcudaErrorSetOnActiveProcess. In this case it is necessary to resetdevice using
cudaDeviceReset()before the device’s initialization flags may be set.

The two LSBs of theflags parameter can be used to control how the CPU thread interacts with the
OS scheduler when waiting for results from the device.

• cudaDeviceScheduleAuto: The default value if theflags parameter is zero, uses a heuristic based
on the number of active CUDA contexts in the processC and the number of logical processors in the
systemP. If C > P, then CUDA will yield to other OS threads when waiting for the device, otherwise
CUDA will not yield while waiting for results and actively spin on the processor.

• cudaDeviceScheduleSpin: Instruct CUDA to actively spin when waiting for results from the device.
This can decrease latency when waiting for the device, but may lower the performance of CPU
threads if they are performing work in parallel with the CUDA thread.

• cudaDeviceScheduleYield: Instruct CUDA to yield its thread when waiting for results from the
device. This can increase latency when waiting for the device, but can increase the performance of
CPU threads performing work in parallel with the device.

• cudaDeviceScheduleBlockingSync: Instruct CUDA to block the CPU thread on a synchronization
primitive when waiting for the device to finish work.

• cudaDeviceBlockingSync: Instruct CUDA to block the CPU thread on a synchronization primitive
when waiting for the device to finish work.
Deprecated:This flag was deprecated as of CUDA 4.0 and replaced with
cudaDeviceScheduleBlockingSync.

• cudaDeviceMapHost: This flag must be set in order to allocate pinned host memory that is
accessible to the device. If this flag is not set,cudaHostGetDevicePointer()will always return a
failure code.

• cudaDeviceLmemResizeToMax: Instruct CUDA to not reduce local memory after resizing local
memory for a kernel. This can prevent thrashing by local memory allocations when launching many
kernels with high local memory usage at the cost of potentially increased memory usage.

Parameters:
flags- Parameters for device operation

Returns:
cudaSuccess, cudaErrorIn validDevice, cudaErrorSetOnActiveProcess

See also:
cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties, cudaSetDevice,
cudaSetValidDevices, cudaChooseDevice

cudaError_t cudaSetValidDevices (int * device_arr, int len)
Sets a list of devices for CUDA execution in priority order usingdevice_arr. The parameterlen
specifies the number of elements in the list. CUDA will try devices from the list sequentially until it
finds one that works. If this function is not called, or if it is called with alen of 0, then CUDA will go
back to its default behavior of trying devices sequentially from a default list containing all of the
available CUDA devices in the system. If a specified device ID in the list does not exist, this function
will return cudaErrorIn validDevice. If len is not 0 anddevice_arr is NULL or if len exceeds
the number of devices in the system, thencudaErrorIn validValue is returned.

Parameters:
device_arr- List of devices to try
len - Number of devices in specified list

Returns:

Version 6.0 1 Apr 2014 16

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

Device Management(3) Doxygen Device Management(3)

cudaSuccess, cudaErrorIn validValue, cudaErrorIn validDevice

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaSetDeviceFlags,
cudaChooseDevice

Author
Generated automatically by Doxygen from the source code.

Version 6.0 1 Apr 2014 17

man.m.sourcentral.orgUbuntu 14.10 (Utopic Unicorn)

https://man.m.sourcentral.org/ubuntu1410/3+cudaChooseDevice

