Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

NAME
CUnit - A unit testing framaork for C

SYNOPSIS
#include <CUnit/CUnit.h> ASSER definitions, test management.
#include <CUnit/Automated.h> Automated interface with xml output.
#include <CUnit/Basic.h> Basic interface with console output.
#include <CUnit/Console.h> Interactve mnsole interface.

#include <CUnit/CUCurses.h> Interactve aurses interface.

DESCRIPTION
CUnit is a system for writing, administering, and running unit tests in C. It uses a simplevérame
for building test structures, and provides a rich set of assertions for testing common dat&typies.
is built as a static library which is linked with the usdgsting code.

STRUCTURE & GENERAL USAGE
CUnit is a combination of a platform-independent freuord with various user interfaces. The core
frameawork provides basic support for managing a tegtstey, suites, and test cases. The user inter
faces facilitate interaction with the framerk to run tests and weresults.

The basic hierarchichal genization of CUnit is depicted here:

Test Registry
|

I I
Suite'1l’ Suite’'N’

Test'11’ ... Test’'IM’ Test N1’ ... Test 'NM’

Individual test cases are packaged into suites, which gigered with the aaté test rgistry. Suites

can hae ®tup and teardown functions which are automatically called before and after running the
suite’s tests. All suites/tests in thegistry may be run using a single function call, or selected suites or
tests can be run.

The typical usage of CUnit is:

1. Write functions for tests (and suite init/cleanup if necessary).
2. Initialize the test registry usir@U_initialize_registry()

3. Add test suites to the registry usidy_add_suite()

4. Add test cases to the suites usiitg) add_test()

5. Run tests using the desired interface, e.g.
CU_console_run_tests(Jo use the interact mnsole.

6. Cleanup the test registry usi@ty cleanup_registry()

(=12 [s]

L]

Ea2t=A cunit-2.0-1 Augus004 1

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

=]

L]

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

[=

CUnit(3) CUnitProgrammes Manual CUnit(3)

All public names in CUnit are prefixed with 'CU_". This helps minimize clashes with names in user
code. Notehat earlier versions CUnit used different names without this prefix. The older APl names
are deprecated but still supporte@io use the older names, user code must he mmpiled with
USE_DEPRECATED_CUNIT_NAMES defined.

WRITING TEST FUNCTIONS

A "test" is a C function having the signatuveid test_func(wid). There are no restrictions on the
content of a test functionxeept that it should not modify the CUnit frawark (e.g. add suites or
tests, modify the test gestry, or initiate a test run) A test function may call other functions (which
also may not modify the fram@rk). Registering a test will cause stfunction to be run when the test
is run.

CUnit provides a set of assertions for testing logical conditidime success or failure of these asser
tions is tracked by the frawerk, and can be viewed when a test run is completeh assertion tests

a dngle logical condition, and fails if the conditionaluates to CU_RLSE. Uponfailure, the test
continues unless the user chooses the 'X&XARE' version of an assertion. In that case, the test func-
tion returns immediately.

CUnit provides a set of assertions for testing logical conditidime success or failure of these asser
tions is tracked by the framwerk, and can be viewed when a test run is complete.

Each assertion tests a single logical condition, aitsl if the condition ealuates to CU_RALSE. Upon
failure, the test function continues unless the user chooses the ALFv ersion of an assertiorin

that case, the test function is aborted and returns immedi&&hA L versions of assertions should

be used with caution! There is no opportunity for the test function to clean up after itself once a
FATAL assertion &ils. Thenormal suite cleanup function is not affected, haoae

There are also special "assertions” f@istering a pass or fail with the framerk without performing
a logical test. These are useful for testingvflof control or other conditions not requiring a logical
test.

Other functions called by agistered test function may use the CUnit assertions frédigse asser
tions will be counted for the calling functioihey may also use ATAL versions of assertionsaifure
will abort the original test function and its entire call chain.

The assertions defined by CUnit are:

#include <CUnit/CUnit.h>

CU_ASSERT(int expression)
CU_ASSERT_FATA L(int expression)
CU_TEST(int expression)
CU_TEST_FATAL(int expression)
Assert that expression is CU_TRUE (non-zero).

CU_ASSERT_TRUE(value)
CU_ASSERT_TRUE_FATAL(value)

Ea2=A cunit-2.0-1 Augus004 2

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

Assert that value is CU_TRUE (non-zero).

CU_ASSERT_FALSE(value)
CU_ASSERT_FALSE_FATAL (value)
Assert that value is CU_FALSE (zero).

CU_ASSERT_EQUAL(actual, expected)
CU_ASSERT_EQUAL_FATAL(actual, expected)
Assert that actual == expected.

CU_ASSERT_NOT_EQUAL(actual, expected)
CU_ASSERT_NOT_EQUAL_FATA L (actual, expected)
Assert that actual |= expected.

CU_ASSERT_PTR_EQJAL(actual, expected)
CU_ASSERT_PTR_EQJAL_FATA L(actual, expected)
Assert that pointers actual == expected.

CU_ASSERT_PTR_NOT_EQUJAL(actual, expected)
CU_ASSERT_PTR_NOT_EQJAL_FATA L(actual, expected)
Assert that pointers actual != expected.

CU_ASSERT_PTR_NULL(value)
CU_ASSERT_PTR_NULL_FATAL(value)
Assert that pointer value == NULL.

CU_ASSERT_PTR_NOT_NULL(value)
CU_ASSERT_PTR_NOT_NULL_FATAL(value)
Assert that pointer value '= NULL.

CU_ASSERT_STRING_EQUAL(actual, expected)
CU_ASSERT_STRING_EQUAL_FATAL(actual, expected)
Assert that strings actual and expected arevelguit.

CU_ASSERT_STRING_NOT_EQUJAL(actual, expected)
CU_ASSERT_STRING_NOT_EQUAL_FATA L(actual, expected)
Assert that strings actual and expected differ.

]] CU_ASSERT_NSTRING_EQUAL(actual, expected, count)

L]

Ea2=A cunit-2.0-1 Augus2004 3

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

CU_ASSERT_NSTRING_EQUAL_FATA L(actual, expected, count)
Assert that 1st count chars of actual and expected are the same.

CU_ASSERT_NSTRING_NOT_EQUAL(actual, expected, count)
CU_ASSERT_NSTRING_NOT_EQUAL_FATA L (actual, expected, count)
Assert that 1st count chars of actual and expected differ.

CU_ASSERT_DOUBLE_EQUAL (actual, expected, granularity)
CU_ASSERT_DOUBLE_EQUAL_FATAL(actual, expected, granularity)
Assert that |actual - expected| <= |granularity|.
Math library must be linked in for this assertion.

CU_ASSERT_DOUBLE_NOT_EQUAL (actual, expected, granularity)
CU_ASSERT_DOUBLE_NOT_EQUAL_FATAL(actual, expected, granularity)
Assert that |actual - expected| > |granularity|.
Math library must be linked in for this assertion.

CU_PASS(message)
Register a success without performing a logical test.

CU_FAIL(message)
CU_FAIL_FATAL(message)
Register a failure without performing a logical test.

THE TEST REGISTRY
The test rgistry is the repository for suites and associated tests. The user normally only needs to ini-
tialize the registry before use and clean up afteds. Hovever, other functions are provided to
manipulate the registry when necessary.

The main functions needed by clients are:
#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_ErrorCode CU _initialize_registry(void)
Initializes the frameork. Thisfunction should be called beforeyasther CUnit functions.Fall-
ure to do so will likely result in a crash. An error status code is returned:

CUE_SUCCESS ff initialization is successful.

CUE_NOMEMORY
if memory allocation failed.

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus004 4

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

CU_BOOL CU_registry_initialized(void)
Checks whether the framverk has been initializedThis may be useful if the registry setup is
distributed @er multiple files that need to malaure the registry is ready for test registration.

void CU_cleanup_registry(void)
Cleans up and releases memory used by the ¥varke No CUnit functions (other tha@U _ini-
tialize_registry()) should be called after this functiorkalure to callCU_cleanup_registry()
will result in memory leaks. Note also that this function will dgstib suites (and associated
tests) in the registry.

Other registry functions are primarily for internal and testing purpoldesvever, general users may
find use for them and should bease of them. These include:

CU_pTestRegistry CU_get_registry(void)
Retrieve a pinter to the actie test rgistry. The registry is aariable of data type CU €btreg-
istry (declared in <CUnit@stDB.h>). Notehat the returned pointer will bevidlidated by a call
to CU_cleanup_registry()or CU_initialize_registry()

CU_pTestRegistry CU_set_registry(CU_pTestRegistry pTestRegistry)
Replace the acté regstry with the specified oneA pointer to the previous registry is returned.
It is the caller’s responsibility to destroy the old egistry. This can be accomplished using
CU_destroy_existing_registry()on the returned pointerAlternatively, the old registry can be
set as the actt cne. Asubsequent call t8U_cleanup_registry()will then destrg it automati-
cally. Care should be taken not to explicitly degteoregstry that is set as the a@i me. This
will result in multiple frees of the same memory and a likely crash.

CU_pTestRegistry CU_create_new_registry(void)
Create a ne& regstry and return a pointer to it. Thewmeegstry will not contain ap suites or
tests. Itis the callers responsibility to destgothe nev regstry by one of the mechanisms
described previously.

void CU_destroy_existing_registry(CU_pTestRegistry* ppRegistry)
Destrg/ the specified test géstry, including ay regstered suites. This function should not be
called for a registry which is set as the atiest rgistry. This will result in a multiple free of
the same memory whe@U_cleanup_registry()is called. ppRagistry may not be NULL, it
the pointer it points to may be. Note that *ppRegistry will be NULL on return.

MANAGING TESTS AND SUITES
In order for a test to be run by CUnit, it must be added to a test collection (suite) whigistsred
with the test registry.

Adding Suites to the Registry
The first step in setting up a test system is creating gistaggng one or more test collections (suites).
Each suite has a name which may be used to reference the suite. Therefore, it is recomunemoted (b
required) that each registered suitgeha unique name. The current implementation does not support
the creation of suites independent of the tegistg. Suites are simultaneously created and added to
the actve regstry as follows.

(=12 [s]

L]

Ea2=A cunit-2.0-1 AugusR004 5

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)
#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_pSuite CU_add_suite(const char* strName, CU_InitializeFunc plnit,
CU_CleanupFunc pClean)" This creates and registera/auie having the specified name, ini-
tialization function, and cleanup functiorA pointer to the ne suite is returned for use in
adding tests to the suite. This pointer will be NULL if a fatal error occlrsaddition, the
framework error status is set as follows:

CUE_SUCCESS The suite was successfully created and registered.

CUE_NOREGISTRY
Error: Test Registry is not initialized.

CUE_NO_SUITENAME
Error: Suite name is not specified or NULL.

CUE_DUP_SUITE Warning: The registry already has a suite with this name.
CUE_NOMEMORY Error: Memory allocation failed.

The initialization and cleanup functions are optional. Both are C functioisghtne signature

int func_name(wid). These functions can perform setup and teardown operations needed to
support the suite’'tests. The are called before and after the susté&sts are run,ven if only 1

of the suites tests is run.They take no aguments, and should return NULL if sheomplete
successfully (non-NULL otherwise)f either function is not required for a particular suite, pass
NULL to CU_add_suite().

Adding Tests to Suites
Tests are created and added to suiteach test has a name which may be used to reference the test
later Therefore, it is recommended (but not required) that the name be unique among all tests added to
a dngle suite. The current implementation does not support the creation of tests independgst of re
tered suites.Tests are simultaneously created and added to a suite as follows.

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_pTest CU_add_test(CU_pSuit@Suite, const char* strName, CU_TestFunc
pTestFunc)" This creates améest haing the specified name and test function, and adds it to
the indicated suite. The suite shouldvddeen previously created usiglJ add_suite(). A
pointer to the ng test is returned, which will be NULL if afal error occurred. In addition, the
framework error status is set as follows:

CUE_SUCCESS The test was successfully created and added.

CUE_NOREGISTRY
Error: Test Registry is not initialized.

(=12 [s]

L]

Ea2=A cunit-2.0-1 AugusR004 6

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)
CUE_NOSUITE Error: Specified suite is NULL owahid.

CUE_NO_TESTNAME
Error: Test name is not specified or NULL.

CUE_NOTEST Error: Test function is not specified or NULL.
CUE_DUP_TEST Warning: The suite already has a test with this name.

CUE_NOMEMORY Error: Memory allocation failed.

Activation of Suites and Tests
A suite or test must be aeé © be executed during a test run (all suites and tests areeabjidefault
upon creation). The agt date of a suite or test ivalable as pSuite->fActie and pTest->fActive,
respectiely. The flag will be CU_TRUE when the entity is &etiCU_FALSE otherwise. Use the fol-
lowing functions to seleatély deactvate suites and tests to choose subsets of tests to run dynamically
Note that it is a frameork error to deactiate a test or suite and then specifically request that it be run.

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)
CU_ErrorCode CU_set_suite_actie(CU_pSuite pSuite, CU_BOOL fNewActve)

CU_ErrorCode CU_set_test_actie(CU_pTest pTest, CU_BOOL fNewActve)
Pass CU_TRUE to these functions to aate a suite/test, CU_FALSE to deaete it. These
functions return CUE_NOSUITE and CUE_NBEST, respectiely, if the specified suite or test is
NULL.

Modifying Other Attributes of Suites and Tests
Normally the attribites of suites and tests are set at creation time. In some cases, a client may wish to
manipulate these to modify the test structure dynamicdlhe following functions are provided for
this purpose, and should be used instead of directly settingline of the data structure membe#sgl
return CUE_SUCCESS on success, and the indicated error code on failure.

CU_ErrorCode CU_set_suite_name(CU_pSuite pSuite, const char *strNewName)

CU_ErrorCode CU_set_test_ name(CU_pTest pTest, const char *strNewName)
These functions change the name of registered suites and tests. The current navadabdee a
as thepSuite->pName</I>and pTest->pNamedata structure memberdf the suite or test is
NULL, then CUE_NOSUITE or CUE_NUTEST is returned, respeatly. If strNewName is
NULL, then CUE_NO_SUITENAME or CUE_NO_TESTNAME is returned, respelgti

CU_ErrorCode CU_set_suite_initfunc(CU_pSuite pSuite, CU_InitializeFunc pNewlnit)

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus004 7

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3)

CUnitProgrammes Manual CUnit(3)

CU_ErrorCode CU_set_suite_cleanupfunc(CU_pSuite pSuite, CU_CleanupFunc pNewClean)

These functions change the initialization and cleanup functions fgjister®d suite. The cur
rent functions arevailable as thepSuite->plnitializeFunc and pSuite->pCleanupFuncdata
structure members. If the suite is NULL then CUE_NOSUITE is returned.

CU_ErrorCode CU_set_test_func(CU_pTest pTest, CU_TestFunc pNewFunc)

This function changes the test function for a registered Tés.current test function ivalable
as thepTest->pTestFunc</I>data structure membelf either pTest or pNewFunc is NULL,
then CUE_NOTEST is returned.

Lookup of Individual Suites and Tests
In most cases, clients will ha references to registered suites and tests as pointers returned from
CU_add_suite()and CU_add_test(). Occassionallya dient may need to be able to retgea efer-
ence to a suite or testhe following functions are provided to assist clients with this when the client
has some information about the entity (name or ordergidtration). Incases where nothing is ko

about the suite or test, the client will need to iterate the internal data structures to enumerate the suites

and tests. This is not directly supported in the client API.

CU_pSuite CU_get_suite(const char* strName)

CU_pSuite CU_get_suite_at_pos(unsigned int pos)

unsigned int CU_get_suite_pos(CU_pSuite pSuite)

unsigned int CU_get_suite_pos_by name(const char* strName)

</P> These functions facilitate lookup of suitegistered in the aate test rgistry. The first 2
functions allev lookup of the suite by nhame or position and return NULL if the suite cannot be
found. Theposition is a 1-based indén the range [1 ..CU_get registry() ->uiNumberOf-
Suites]. Thismay be helpful when suites\hiag duplicate names are registered, in which case
lookup by name can only retvie the 1st suite having that name. The second 2 functions help the
client identify the position of a registered suifehese return 0 if the suite cannot be fouihd.
addition, all these functions set the CUnit error state to CUE_ NOREMSTRhe registry is

not initialized. As appropriate, CUE_NO_SUITENAME is set if strName is NULL, and
CUE_NOSUITE is set if pSuite is NULL.

CU_pTest CU_get_test(CU_pSuite pSuite, const char *strName)

CU_pTest CU_get _test at pos<(CU_pSuite pSuite, unsigned int pos)

unsigned int CU_get test pos<(CU_pSuite pSuite, CU_pTest pTest)

unsigned int CU_get test pos by name(CU_pSuite pSuite, const char *strName)

(=12 [s]

L]

EA cunit-2.0-1

These functionsafcilitate lookup of tests registered in suites. The first 2 functions &dlokup
of the test by name or position and return NULL if the test cannot folihd. position is a
1-based indein the range [1 .. pSuite->uiNumberOfSuites]. This may be helpful when tests
having duplicate names are registered, in which case lookup by name can one ragridst
test having that namelThe second 2 functions help the client identify the position of a test in a
suite. Theseeturn O if the test cannot be found. In addition, all these functions set the CUnit

Augus004 8

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

error state to CUE_NOREGISWRIf the rayistry is not initialized, and to CUE_NOSUITE if
pSuite is NULL. As appropriate, CUE_NO_TESTNAME is set if strName is NULL, and
CUE_NOTEST is set if pTest is NULL.

RUNNING TESTS
CUnit supports running all tests in all registered suites, but individual tests or suites can also be run.
During each run, the framerk keeps track of the number of suites, tests, and assertions run, passed,
and hiled. Notethat the previous results are cleared each time a test run is initiatadf (ef ails).

While CUnit provides primitie functions for running suites and tests, most users will want to use one
of the user intedces. Theseterfaces handle the details of interaction with the fraonk and pro-

vide output of test details and results for the .uder more about the primite functions, see
<CUnit/testRun.h>.

Test Results
The interfaces present results of test rung,dlient code may sometimes need to access the results
directly. These results include various run counts, as well as a linked latwefrecords holding the
failure details. Test results must be retvied before attempting to run other tests, which resets the
result information. Functions for accessing the test results are:

#include <CUnit/TestRun.h>(included automatically by <CUnit/CUnit.h>)

unsigned int CU_get_number_of suites_run(void)’
Retrieve the number of suites run. Suite having initialization functions wtadtafe not run.To
get the total number of registered suites,@ge get_registry()->uiNumberOfSuites.

unsigned int CU_get_number_of suites_failed(void)
Retrieve the number of suites which had initialization or cleanup functions which failed (returned
non-NULL).

unsigned int CU_get_number_of tests run(void)
Retrieve the number of tests rurfests in suites having initialization functions which fail are not
run. To get the total number of registered tests ,@bke get_registry()->uiNumberOfTests.

unsigned int CU_get_number_of tests failed(void)
Retrieve the number of tests which contained at least 1 failed assertion.

unsigned int CU_get_number_of asserts(void)
Retrieve the number of CUnit assertions made during the test run.

unsigned int CU_get_number_of successes(void)
Retrieve the number of assertions which passed.

unsigned int CU_get_number_of _failures(void)
Retrieve the number of assertions which failed.

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus2004 9

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

const CU_pRunSummary CU_get_run_summary(void)
Retrieve aCU_RunSummary containing all the run count information. This data structure is
declared ircCUnit/TestRun.h> and includes the (selfxplanatory)unsigned int fields nSuites-
Run, nSuitesFailed, nTestsRun, nTestsFailed, nAsserts, and nAssertsFailed.

const CU_pFailureRecord CU_get failure_list(void)

Retrieve the head of the linked list o&ilure records for the last run. Each assertion failure or
suite init/cleanup function failure is registered in avr@U_FailureRecord in the linked list.
This data structure is declared<i@Unit/TestRun.h>and includes the following fields:

unsigned int uiLineNumber

char* strFileName

char* strCondition

CU_pTest pTest

CU_pSuite pSuite

Automated Interface
The automated interface is non-interaeti The current implementation only supports running ajt re
istered suitesResults are output to an xml file to be viewed by appropriate external Rejgstered
tests can also be listed to an xml file fomiiey. Thefollowing public functions arewailable:

#include <CUnit/Automated.h>

void CU_automated_run_tests(void)
Run all tests in all registered (and wefisuites. Resultsare output to a file namefOOT-
Resultsxml. The filename '®OT’ is set usingCU_set_output_filename(),or else the defult
'CUnitAutomated’ is used. This means that the same filename is used each run (and the results
file overwritten) if the user does not explicitly set the '/ROOT’ for each run.

CU_ErrorCode CU_list_tests_to_file(void)
Lists the registered suites and associated tests tdfikelisting file is name&OOT-Listing.xml.
The filename '®OT’ is set usingCU_set_output_filename(),or else the default 'CUnitAuto-
mated’ is used.This means that the same filename is used each run (and the listivgriitate
ten) if the user does not explicitly set the 'ROOT’ for each run.

void CU_set_output_filename(const char* szFilenameRoot)
Set the filename root to use for automated results and listing files.

Basic Interface (non-interactive)
The basic interface is also non-interegtiwith results output to stdout. This interface supports run-
ning individual suites or tests, and allows client code to control the type of output displayed during
each run. This interface provides the mostilfidity to clients desiring simplified access to the CUnit
API. Thefollowing public functions are provided:

#include <CUnit/Basic.h>

CU_ErrorCode CU_basic_run_tests(void)
Run all tests in all registered suite®nly the actie aites are run, and it is not considered an
error if inactve suites are encountered and skipped. Returns the 1st error code occurring during

(=12 [s]

L]

Ea2A cunit-2.0-1 AugusR004 10

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

the test run. The type of output is controlled by the current run mode, which can be set using
CU_basic_set_mode().

CU_ErrorCode CU_basic_run_suite(CU_pSuite pSuite)
Run all tests in single specified suitReturns the 1st error code occurring during the test run.
CU_basic_run_suite() itself generates CUE_NOSUITE if pSuite is NULL, and
CUE_SUITE_IMNCTIVE if the requested suite is not agti The type of output is controlled by

the current run mode.

CU_ErrorCode CU_basic_run_test(CU_pSuite pSuite, CU_pTest pTest)
Run a single test in a specified suite. Returns the 1st error code occurring during the test run.
BU_basic_run_test()itself generates CUE_NOSUITE of pSuite is NULL; CUE_NOTEST if
pTest is NULL; CUE_SUITE_IRCTIVE if pSuite is not actie for execution,
CUE_TEST_NQ _IN_SUITE if pTest is not a gistered member of pSuite, and
CUE_TEST_IMCTIVE if pTest is not actie for execution. The type of output is controlled by

the current run mode.

void CU_basic_set_mode(CU_BasicRunMode mode)
Set the basic run mode, which controls the output during the run. Choices are:

CU_BRM_NORMAL
Falures and run summary are printed.

CU_BRM_SILENT
No output is printed except error messages.

CU_BRM_VERBOSE
Maximum output of run details.

CU_BasicRunMode CU_basic_get _mode(void)
Retrieve the current basic run mode code.

void CU_basic_show_failures(CU_pFailureRecord pFailure)
Prints a summary of all failures to stdout. Does not depend on the run mode.

Interactive Console Interface
The console interface is interagi All the client needs to do is initiate the console session, and the

user controls the test run interaely. This include selection & running of suites and tests, and-vie
ing test results.

#include <CUnit/Console.h>

void CU_console_run_tests(void)
Initiate an interactie st run in the console.

Interacti ve Curses Interface
The curses interface is interagti All the client needs to do is initiate the curses session, and the user

controls the test run interaatly. This include selection & running of suites and tests, and viewing test

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus004 11

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)
results. Usef this interface requires linking the ncurses library into the application.
#include <CUnit/CUCurses.h>

void CU_curses_run_tests(void)
Initiate an interactie st run in curses.

ERROR HANDLING
CUnit Error Status Codes
Many CUnit functions set a frameork error code when an exception occul$ie error codes are an
enum namedCU_ErrorCode declared in header fikeCUnit/CUError.h> (included automatically by
<CUnit/CUnit.h>). Thefollowing functions are provided for retrieving the framoek error status:

#include <CUnit/CUError.h> (included automatically by <CUnit/CUnit.h>)

CU_ErrorCode CU_get_error(void)
Returns the franveork error status code.

const char* CU_get_error_msg(void)
Returns a message for the current error code.

Error Actions
By default, CUnit continues running tests when a fraonk error occurs. In this context, failed asser
tions are not considered "frameark errors”. All other error conditions including suite initialization or
cleanup failures, inacté suites or tests which are runpdicitly, etc. are included. This ’error action’
can be changed by the user if desired. The following functions are provided:

#include <CUnit/CUError.h> (included automatically by <CUnit/CUnit.h>)

void CU_set_error_action(CU_ErrorAction action)
Set the framwork error action.

CU_ErrorAction CU_get_error_action(void)
Retrieve the current error action.

The error actions are definedénum CU_ErrorAction in header file<CUnit/CUError.h> (included
automatically by<CUnit/CUnit.h>) as bllows:

CUEA_IGNORE Continue test runs on frawwk errors (default).
CUEA_FAIL Stop test runs on a framerk error.
CUEA_ABORT Exit the application on a framerk error.

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus004 12

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

CUnit(3) CUnitProgrammes Manual CUnit(3)

AUTHORS
Anil Kumar <anilsaharaAT users DA sourceforge D@ net>
Jerry St.Clair <jds2 Rusers DQ sourceforge D@ net>

WEBSITE
http://cunit.sourceforge.net

(=12 [s]

L]

Ea2=A cunit-2.0-1 Augus2004 13

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

