
CUnit(3) CUnitProgrammer’s Manual CUnit(3)

NAME
CUnit - A unit testing framework for C

SYNOPSIS
#include <CUnit/CUnit.h> ASSERT definitions, test management.

#include <CUnit/Automated.h> Automated interface with xml output.

#include <CUnit/Basic.h> Basic interface with console output.

#include <CUnit/Console.h> Interactive console interface.

#include <CUnit/CUCurses.h> Interactive curses interface.

DESCRIPTION
CUnit is a system for writing, administering, and running unit tests in C. It uses a simple framework
for building test structures, and provides a rich set of assertions for testing common data types.CUnit
is built as a static library which is linked with the user’s testing code.

STRUCTURE & GENERAL USAGE
CUnit is a combination of a platform-independent framework with various user interfaces. The core
framework provides basic support for managing a test registry, suites, and test cases. The user inter-
faces facilitate interaction with the framework to run tests and view results.

The basic hierarchichal organization of CUnit is depicted here:

Test Registry
|

| |

Suite ’1’ Suite ’N’
| |

--------------- ---------------
| | | |

Test ’11’ ... Test ’1M’ Test ’N1’ ... Test ’NM’

Individual test cases are packaged into suites, which are registered with the active test registry. Suites
can have setup and teardown functions which are automatically called before and after running the
suite’s tests. All suites/tests in the registry may be run using a single function call, or selected suites or
tests can be run.

The typical usage of CUnit is:

1. Write functions for tests (and suite init/cleanup if necessary).

2. Initialize the test registry usingCU_initialize_registry()
3. Add test suites to the registry usingCU_add_suite()
4. Add test cases to the suites usingCU_add_test()
5. Run tests using the desired interface, e.g.

CU_console_run_tests()to use the interactive console.

6. Cleanup the test registry usingCU_cleanup_registry()

CUnit-2.0-1 August2004 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

All public names in CUnit are prefixed with ’CU_’. This helps minimize clashes with names in user
code. Notethat earlier versions CUnit used different names without this prefix. The older API names
are deprecated but still supported.To use the older names, user code must now be compiled with
USE_DEPRECATED_CUNIT_NAMES defined.

WRITING TEST FUNCTIONS
A "test" is a C function having the signature:void test_func(void). There are no restrictions on the
content of a test function, except that it should not modify the CUnit framework (e.g. add suites or
tests, modify the test registry, or initiate a test run).A test function may call other functions (which
also may not modify the framework). Registering a test will cause it’s function to be run when the test
is run.

CUnit provides a set of assertions for testing logical conditions.The success or failure of these asser-
tions is tracked by the framework, and can be viewed when a test run is complete.Each assertion tests
a single logical condition, and fails if the condition evaluates to CU_FALSE. Uponfailure, the test
continues unless the user chooses the ’xxx_FAT AL’ version of an assertion. In that case, the test func-
tion returns immediately.

CUnit provides a set of assertions for testing logical conditions.The success or failure of these asser-
tions is tracked by the framework, and can be viewed when a test run is complete.

Each assertion tests a single logical condition, and fails if the condition evaluates to CU_FALSE. Upon
failure, the test function continues unless the user chooses the ’xxx_FAT AL’ version of an assertion.In
that case, the test function is aborted and returns immediately. FATA L versions of assertions should
be used with caution! There is no opportunity for the test function to clean up after itself once a
FATAL assertion fails. Thenormal suite cleanup function is not affected, however.

There are also special "assertions" for registering a pass or fail with the framework without performing
a logical test. These are useful for testing flow of control or other conditions not requiring a logical
test.

Other functions called by a registered test function may use the CUnit assertions freely. These asser-
tions will be counted for the calling function.They may also use FAT AL versions of assertions - failure
will abort the original test function and its entire call chain.

The assertions defined by CUnit are:

#include <CUnit/CUnit.h>

CU_ASSERT(int expression)
CU_ASSERT_FAT AL(int expression)
CU_TEST(int expression)
CU_TEST_FAT AL(int expression)

Assert that expression is CU_TRUE (non-zero).

CU_ASSERT_TRUE(value)
CU_ASSERT_TRUE_FAT AL(value)

CUnit-2.0-1 August2004 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

Assert that value is CU_TRUE (non-zero).

CU_ASSERT_FALSE(value)
CU_ASSERT_FALSE_FAT AL(value)

Assert that value is CU_FALSE (zero).

CU_ASSERT_EQUAL(actual, expected)
CU_ASSERT_EQUAL_FAT AL(actual, expected)

Assert that actual == expected.

CU_ASSERT_NOT_EQUAL(actual, expected)
CU_ASSERT_NOT_EQUAL_FAT AL(actual, expected)

Assert that actual != expected.

CU_ASSERT_PTR_EQUAL(actual, expected)
CU_ASSERT_PTR_EQUAL_FAT AL(actual, expected)

Assert that pointers actual == expected.

CU_ASSERT_PTR_NOT_EQUAL(actual, expected)
CU_ASSERT_PTR_NOT_EQUAL_FAT AL(actual, expected)

Assert that pointers actual != expected.

CU_ASSERT_PTR_NULL(value)
CU_ASSERT_PTR_NULL_FAT AL(value)

Assert that pointer value == NULL.

CU_ASSERT_PTR_NOT_NULL(value)
CU_ASSERT_PTR_NOT_NULL_FAT AL(value)

Assert that pointer value != NULL.

CU_ASSERT_STRING_EQUAL(actual, expected)
CU_ASSERT_STRING_EQUAL_FAT AL(actual, expected)

Assert that strings actual and expected are equivalent.

CU_ASSERT_STRING_NOT_EQUAL(actual, expected)
CU_ASSERT_STRING_NOT_EQUAL_FAT AL(actual, expected)

Assert that strings actual and expected differ.

CU_ASSERT_NSTRING_EQUAL(actual, expected, count)

CUnit-2.0-1 August2004 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

CU_ASSERT_NSTRING_EQUAL_FAT AL(actual, expected, count)
Assert that 1st count chars of actual and expected are the same.

CU_ASSERT_NSTRING_NOT_EQUAL(actual, expected, count)
CU_ASSERT_NSTRING_NOT_EQUAL_FAT AL(actual, expected, count)

Assert that 1st count chars of actual and expected differ.

CU_ASSERT_DOUBLE_EQUAL(actual, expected, granularity)
CU_ASSERT_DOUBLE_EQUAL_FAT AL(actual, expected, granularity)

Assert that |actual - expected| <= |granularity|.
Math library must be linked in for this assertion.

CU_ASSERT_DOUBLE_NOT_EQUAL(actual, expected, granularity)
CU_ASSERT_DOUBLE_NOT_EQUAL_FAT AL(actual, expected, granularity)

Assert that |actual - expected| > |granularity|.
Math library must be linked in for this assertion.

CU_PASS(message)
Register a success without performing a logical test.

CU_FAIL(message)
CU_FAIL_FAT AL(message)

Register a failure without performing a logical test.

THE TEST REGISTRY
The test registry is the repository for suites and associated tests. The user normally only needs to ini-
tialize the registry before use and clean up afterwards. However, other functions are provided to
manipulate the registry when necessary.

The main functions needed by clients are:

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_ErrorCode CU_initialize_registry(void)
Initializes the framework. Thisfunction should be called before any other CUnit functions.Fail-
ure to do so will likely result in a crash. An error status code is returned:

CUE_SUCCESS if initialization is successful.

CUE_NOMEMORY
if memory allocation failed.

CUnit-2.0-1 August2004 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

CU_BOOL CU_registry_initialized(void)
Checks whether the framework has been initialized.This may be useful if the registry setup is
distributed over multiple files that need to make sure the registry is ready for test registration.

void CU_cleanup_registry(void)
Cleans up and releases memory used by the framework. No CUnit functions (other thanCU_ini-
tialize_registry()) should be called after this function.Failure to callCU_cleanup_registry()
will result in memory leaks. Note also that this function will destroy all suites (and associated
tests) in the registry.

Other registry functions are primarily for internal and testing purposes.However, general users may
find use for them and should be aware of them. These include:

CU_pTestRegistry CU_get_registry(void)
Retrieve a pointer to the active test registry. The registry is a variable of data type CU_Testreg-
istry (declared in <CUnit/TestDB.h>). Notethat the returned pointer will be invalidated by a call
to CU_cleanup_registry()or CU_initialize_registry()

CU_pTestRegistry CU_set_registry(CU_pTestRegistry pTestRegistry)
Replace the active registry with the specified one.A pointer to the previous registry is returned.
It is the caller’s responsibility to destroy the old registry. This can be accomplished using
CU_destroy_existing_registry()on the returned pointer. Alternatively, the old registry can be
set as the active one. Asubsequent call toCU_cleanup_registry()will then destroy it automati-
cally. Care should be taken not to explicitly destroy a registry that is set as the active one. This
will result in multiple frees of the same memory and a likely crash.

CU_pTestRegistry CU_create_new_registry(void)
Create a new registry and return a pointer to it. The new registry will not contain any suites or
tests. It is the caller’s responsibility to destroy the new registry by one of the mechanisms
described previously.

void CU_destroy_existing_registry(CU_pTestRegistry* ppRegistry)
Destroy the specified test registry, including any registered suites. This function should not be
called for a registry which is set as the active test registry. This will result in a multiple free of
the same memory whenCU_cleanup_registry() is called. ppRegistry may not be NULL, but
the pointer it points to may be. Note that *ppRegistry will be NULL on return.

MAN AGING TESTS AND SUITES
In order for a test to be run by CUnit, it must be added to a test collection (suite) which is registered
with the test registry.

Adding Suites to the Registry
The first step in setting up a test system is creating and registering one or more test collections (suites).
Each suite has a name which may be used to reference the suite. Therefore, it is recommended (but not
required) that each registered suite have a unique name. The current implementation does not support
the creation of suites independent of the test registry. Suites are simultaneously created and added to
the active registry as follows.

CUnit-2.0-1 August2004 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_pSuite CU_add_suite(const char* strName, CU_InitializeFunc pInit,
CU_CleanupFunc pClean)" This creates and registers a new suite having the specified name, ini-
tialization function, and cleanup function.A pointer to the new suite is returned for use in
adding tests to the suite. This pointer will be NULL if a fatal error occurs.In addition, the
framework error status is set as follows:

CUE_SUCCESS The suite was successfully created and registered.

CUE_NOREGISTRY
Error: Test Registry is not initialized.

CUE_NO_SUITENAME
Error: Suite name is not specified or NULL.

CUE_DUP_SUITE Warning: The registry already has a suite with this name.

CUE_NOMEMORY Error: Memory allocation failed.

The initialization and cleanup functions are optional. Both are C functions having the signature
int func_name(void). These functions can perform setup and teardown operations needed to
support the suite’s tests. They are called before and after the suite’s tests are run, even if only 1
of the suite’s tests is run.They take no arguments, and should return NULL if they complete
successfully (non-NULL otherwise).If either function is not required for a particular suite, pass
NULL to CU_add_suite().

Adding Tests to Suites
Tests are created and added to suites.Each test has a name which may be used to reference the test
later. Therefore, it is recommended (but not required) that the name be unique among all tests added to
a single suite. The current implementation does not support the creation of tests independent of regis-
tered suites.Tests are simultaneously created and added to a suite as follows.

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_pTest CU_add_test(CU_pSuitepSuite, const char* strName, CU_TestFunc
pTestFunc)" This creates a new test having the specified name and test function, and adds it to
the indicated suite. The suite should have been previously created usingCU_add_suite(). A
pointer to the new test is returned, which will be NULL if a fatal error occurred. In addition, the
framework error status is set as follows:

CUE_SUCCESS The test was successfully created and added.

CUE_NOREGISTRY
Error: Test Registry is not initialized.

CUnit-2.0-1 August2004 6

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

CUE_NOSUITE Error: Specified suite is NULL or invalid.

CUE_NO_TESTNAME
Error: Test name is not specified or NULL.

CUE_NOTEST Error: Test function is not specified or NULL.

CUE_DUP_TEST Warning: The suite already has a test with this name.

CUE_NOMEMORY Error: Memory allocation failed.

Activation of Suites and Tests
A suite or test must be active to be executed during a test run (all suites and tests are active by default
upon creation). The active state of a suite or test is available as pSuite->fActive and pTest->fActive,
respectively. The flag will be CU_TRUE when the entity is active, CU_FALSE otherwise. Use the fol-
lowing functions to selectively deactivate suites and tests to choose subsets of tests to run dynamically.
Note that it is a framework error to deactivate a test or suite and then specifically request that it be run.

#include <CUnit/TestDB.h>(included automatically by <CUnit/CUnit.h>)

CU_ErrorCode CU_set_suite_active(CU_pSuite pSuite, CU_BOOL fNewActive)

CU_ErrorCode CU_set_test_active(CU_pTest pTest, CU_BOOL fNewActive)
Pass CU_TRUE to these functions to activate a suite/test, CU_FALSE to deactivate it. These
functions return CUE_NOSUITE and CUE_NOTEST, respectively, if the specified suite or test is
NULL.

Modifying Other Attributes of Suites and Tests
Normally the attributes of suites and tests are set at creation time. In some cases, a client may wish to
manipulate these to modify the test structure dynamically. The following functions are provided for
this purpose, and should be used instead of directly setting the value of the data structure members.All
return CUE_SUCCESS on success, and the indicated error code on failure.

CU_ErrorCode CU_set_suite_name(CU_pSuite pSuite, const char *strNewName)

CU_ErrorCode CU_set_test_name(CU_pTest pTest, const char *strNewName)
These functions change the name of registered suites and tests. The current names are available
as thepSuite->pName</I> and pTest->pNamedata structure members.If the suite or test is
NULL, then CUE_NOSUITE or CUE_NOTEST is returned, respectively. If strNewName is
NULL, then CUE_NO_SUITENAME or CUE_NO_TESTNAME is returned, respectively.

CU_ErrorCode CU_set_suite_initfunc(CU_pSuite pSuite, CU_InitializeFunc pNewInit)

CUnit-2.0-1 August2004 7

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

CU_ErrorCode CU_set_suite_cleanupfunc(CU_pSuite pSuite, CU_CleanupFunc pNewClean)
These functions change the initialization and cleanup functions for a registered suite. The cur-
rent functions are available as thepSuite->pInitializeFunc and pSuite->pCleanupFuncdata
structure members. If the suite is NULL then CUE_NOSUITE is returned.

CU_ErrorCode CU_set_test_func(CU_pTest pTest, CU_TestFunc pNewFunc)
This function changes the test function for a registered test.The current test function is available
as thepTest->pTestFunc</I> data structure member. If either pTest or pNewFunc is NULL,
then CUE_NOTEST is returned.

Lookup of Individual Suites and Tests
In most cases, clients will have references to registered suites and tests as pointers returned from
CU_add_suite()andCU_add_test(). Occassionally, a client may need to be able to retrieve a refer-
ence to a suite or test.The following functions are provided to assist clients with this when the client
has some information about the entity (name or order of registration). Incases where nothing is known
about the suite or test, the client will need to iterate the internal data structures to enumerate the suites
and tests. This is not directly supported in the client API.

CU_pSuite CU_get_suite(const char* strName)

CU_pSuite CU_get_suite_at_pos(unsigned int pos)

unsigned int CU_get_suite_pos(CU_pSuite pSuite)

unsigned int CU_get_suite_pos_by_name(const char* strName)
</P> These functions facilitate lookup of suites registered in the active test registry. The first 2
functions allow lookup of the suite by name or position and return NULL if the suite cannot be
found. Theposition is a 1-based index in the range [1 ..CU_get_registry() ->uiNumberOf-
Suites]. Thismay be helpful when suites having duplicate names are registered, in which case
lookup by name can only retrieve the 1st suite having that name. The second 2 functions help the
client identify the position of a registered suite.These return 0 if the suite cannot be found.In
addition, all these functions set the CUnit error state to CUE_NOREGISTRY> if the registry is
not initialized. As appropriate, CUE_NO_SUITENAME is set if strName is NULL, and
CUE_NOSUITE is set if pSuite is NULL.

CU_pTest CU_get_test(CU_pSuite pSuite, const char *strName)

CU_pTest CU_get_test_at_pos<(CU_pSuite pSuite, unsigned int pos)

unsigned int CU_get_test_pos<(CU_pSuite pSuite, CU_pTest pTest)

unsigned int CU_get_test_pos_by_name(CU_pSuite pSuite, const char *strName)
These functions facilitate lookup of tests registered in suites. The first 2 functions allow lookup
of the test by name or position and return NULL if the test cannot found.The position is a
1-based index in the range [1 .. pSuite->uiNumberOfSuites]. This may be helpful when tests
having duplicate names are registered, in which case lookup by name can only retrieve the 1st
test having that name.The second 2 functions help the client identify the position of a test in a
suite. Thesereturn 0 if the test cannot be found. In addition, all these functions set the CUnit

CUnit-2.0-1 August2004 8

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

error state to CUE_NOREGISTRY if t he registry is not initialized, and to CUE_NOSUITE if
pSuite is NULL. As appropriate, CUE_NO_TESTNAME is set if strName is NULL, and
CUE_NOTEST is set if pTest is NULL.

RUNNING TESTS
CUnit supports running all tests in all registered suites, but individual tests or suites can also be run.
During each run, the framework keeps track of the number of suites, tests, and assertions run, passed,
and failed. Notethat the previous results are cleared each time a test run is initiated (even if it f ails).

While CUnit provides primitive functions for running suites and tests, most users will want to use one
of the user interfaces. Theseinterfaces handle the details of interaction with the framework and pro-
vide output of test details and results for the user. For more about the primitive functions, see
<CUnit/testRun.h>.

Test Results
The interfaces present results of test runs, but client code may sometimes need to access the results
directly. These results include various run counts, as well as a linked list of failure records holding the
failure details. Test results must be retrieved before attempting to run other tests, which resets the
result information. Functions for accessing the test results are:

#include <CUnit/TestRun.h>(included automatically by <CUnit/CUnit.h>)

unsigned int CU_get_number_of_suites_run(void)’
Retrieve the number of suites run. Suite having initialization functions which fail are not run.To
get the total number of registered suites, useCU_get_registry()->uiNumberOfSuites.

unsigned int CU_get_number_of_suites_failed(void)
Retrieve the number of suites which had initialization or cleanup functions which failed (returned
non-NULL).

unsigned int CU_get_number_of_tests_run(void)
Retrieve the number of tests run.Tests in suites having initialization functions which fail are not
run. To get the total number of registered tests , useCU_get_registry()->uiNumberOfTests.

unsigned int CU_get_number_of_tests_failed(void)
Retrieve the number of tests which contained at least 1 failed assertion.

unsigned int CU_get_number_of_asserts(void)
Retrieve the number of CUnit assertions made during the test run.

unsigned int CU_get_number_of_successes(void)
Retrieve the number of assertions which passed.

unsigned int CU_get_number_of_failures(void)
Retrieve the number of assertions which failed.

CUnit-2.0-1 August2004 9

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

const CU_pRunSummary CU_get_run_summary(void)
Retrieve aCU_RunSummary containing all the run count information. This data structure is
declared in<CUnit/TestRun.h> and includes the (self-explanatory)unsigned int fields nSuites-
Run, nSuitesFailed, nTestsRun, nTestsFailed, nAsserts, and nAssertsFailed.

const CU_pFailureRecord CU_get_failure_list(void)
Retrieve the head of the linked list of failure records for the last run. Each assertion failure or
suite init/cleanup function failure is registered in a new CU_FailureRecord in the linked list.
This data structure is declared in<CUnit/TestRun.h> and includes the following fields:

unsigned int uiLineNumber
char* strFileName
char* strCondition
CU_pTest pTest
CU_pSuite pSuite

Automated Interface
The automated interface is non-interactive. The current implementation only supports running all reg-
istered suites.Results are output to an xml file to be viewed by appropriate external tools.Registered
tests can also be listed to an xml file for viewing. Thefollowing public functions are available:

#include <CUnit/Automated.h>

void CU_automated_run_tests(void)
Run all tests in all registered (and active) suites. Resultsare output to a file namedROOT-
Results.xml. The filename ’ROOT’ is set usingCU_set_output_filename(),or else the default
’CUnitAutomated’ is used. This means that the same filename is used each run (and the results
file overwritten) if the user does not explicitly set the ’ROOT’ for each run.

CU_ErrorCode CU_list_tests_to_file(void)
Lists the registered suites and associated tests to file.The listing file is namedROOT-Listing.xml.
The filename ’ROOT’ is set usingCU_set_output_filename(),or else the default ’CUnitAuto-
mated’ is used.This means that the same filename is used each run (and the listing file overwrit-
ten) if the user does not explicitly set the ’ROOT’ for each run.

void CU_set_output_filename(const char* szFilenameRoot)
Set the filename root to use for automated results and listing files.

Basic Interface (non-interactive)
The basic interface is also non-interactive, with results output to stdout. This interface supports run-
ning individual suites or tests, and allows client code to control the type of output displayed during
each run. This interface provides the most flexibility to clients desiring simplified access to the CUnit
API. Thefollowing public functions are provided:

#include <CUnit/Basic.h>

CU_ErrorCode CU_basic_run_tests(void)
Run all tests in all registered suites.Only the active suites are run, and it is not considered an
error if inactive suites are encountered and skipped. Returns the 1st error code occurring during

CUnit-2.0-1 August2004 10

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

the test run. The type of output is controlled by the current run mode, which can be set using
CU_basic_set_mode().

CU_ErrorCode CU_basic_run_suite(CU_pSuite pSuite)
Run all tests in single specified suite.Returns the 1st error code occurring during the test run.
CU_basic_run_suite() itself generates CUE_NOSUITE if pSuite is NULL, and
CUE_SUITE_INACTIVE if the requested suite is not active. The type of output is controlled by
the current run mode.

CU_ErrorCode CU_basic_run_test(CU_pSuite pSuite, CU_pTest pTest)
Run a single test in a specified suite. Returns the 1st error code occurring during the test run.
BU_basic_run_test() itself generates CUE_NOSUITE of pSuite is NULL; CUE_NOTEST if
pTest is NULL; CUE_SUITE_INACTIVE if pSuite is not active for execution,
CUE_TEST_NOT_IN_SUITE if pTest is not a registered member of pSuite, and
CUE_TEST_INACTIVE if pTest is not active for execution. The type of output is controlled by
the current run mode.

void CU_basic_set_mode(CU_BasicRunMode mode)
Set the basic run mode, which controls the output during the run. Choices are:

CU_BRM_NORMAL
Failures and run summary are printed.

CU_BRM_SILENT
No output is printed except error messages.

CU_BRM_VERBOSE
Maximum output of run details.

CU_BasicRunMode CU_basic_get_mode(void)
Retrieve the current basic run mode code.

void CU_basic_show_failures(CU_pFailureRecord pFailure)
Prints a summary of all failures to stdout. Does not depend on the run mode.

Interacti ve Console Interface
The console interface is interactive. All the client needs to do is initiate the console session, and the
user controls the test run interactively. This include selection & running of suites and tests, and view-
ing test results.

#include <CUnit/Console.h>

void CU_console_run_tests(void)
Initiate an interactive test run in the console.

Interacti ve Curses Interface
The curses interface is interactive. All the client needs to do is initiate the curses session, and the user
controls the test run interactively. This include selection & running of suites and tests, and viewing test

CUnit-2.0-1 August2004 11

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

results. Useof this interface requires linking the ncurses library into the application.

#include <CUnit/CUCurses.h>

void CU_curses_run_tests(void)
Initiate an interactive test run in curses.

ERROR HANDLING
CUnit Error Status Codes

Many CUnit functions set a framework error code when an exception occurs.The error codes are an
enum namedCU_ErrorCode declared in header file<CUnit/CUError.h> (included automatically by
<CUnit/CUnit.h>). Thefollowing functions are provided for retrieving the framework error status:

#include <CUnit/CUError.h> (included automatically by <CUnit/CUnit.h>)

CU_ErrorCode CU_get_error(void)
Returns the framework error status code.

const char* CU_get_error_msg(void)
Returns a message for the current error code.

Error Actions
By default, CUnit continues running tests when a framework error occurs. In this context, failed asser-
tions are not considered "framework errors". All other error conditions including suite initialization or
cleanup failures, inactive suites or tests which are run explicitly, etc. are included. This ’error action’
can be changed by the user if desired. The following functions are provided:

#include <CUnit/CUError.h> (included automatically by <CUnit/CUnit.h>)

void CU_set_error_action(CU_ErrorAction action)
Set the framework error action.

CU_ErrorAction CU_get_error_action(void)
Retrieve the current error action.

The error actions are defined inenum CU_ErrorAction in header file<CUnit/CUError.h> (included
automatically by<CUnit/CUnit.h>) as follows:

CUEA_IGNORE Continue test runs on framework errors (default).

CUEA_FAIL Stop test runs on a framework error.

CUEA_ABORT Exit the application on a framework error.

CUnit-2.0-1 August2004 12

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

CUnit(3) CUnitProgrammer’s Manual CUnit(3)

AUTHORS
Anil Kumar <anilsaharanAT users DOT sourceforge DOT net>
Jerry St.Clair <jds2 AT users DOT sourceforge DOT net>

WEBSITE
http://cunit.sourceforge.net

CUnit-2.0-1 August2004 13

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+CUnit

