
Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

NAME
Dancer2::Cookbook − Example−driven quick−start to the Dancer2 web framework

VERSION
version 0.160003

DESCRIPTION
A quick-start guide with examples to get you up and running with the Dancer2 web framework. This
document will be twice as useful if you finish reading the manual (Dancer2::Manual) first, but that is
not required... :−)

BEGINNER’S DANCE
A simple Dancer2 web app

Dancer2 has been designed to be easy to work with − it’s trivial to write a simple web app, but still has
the power to work with larger projects. To start with, let’s make an incredibly simple ‘‘Hello World’’
example:

#!/usr/bin/env perl

use Dancer2;

get '/hello/:name' => sub {
return "Why, hello there " . params−>{name};

};

dance;

Yes − the above is a fully-functioning web app; running that script will launch a webserver listening on
the default port (3000). Now you can make a request:

$ c url http://localhost:3000/hello/Bob
Why, hello there Bob

and it will say hello. The:name part is a named parameter within the route specification, whose value
is made available throughparams .

Note that you don’t need to use thestrict and warnings pragmas; they are already loaded by
Dancer2.

Default Route
In case you want to avoid a404 error, or handle multiple routes in the same way and you don’t feel like
configuring all of them, you can set up a default route handler.

The default route handler will handle any request that doesn’t get served by any other route.

All you need to do is set up the following route as thelast route:

any qr{.*} => sub {
status 'not_found';
template 'special_404', { path => request−>path };

};

Then you can set up the template like so:

You tried to reach [% path %], but it is unavailable at the moment.

Please try again or contact us at <contact AT example DOT com>.

Using theauto_page feature for automatic route creation
For simple ‘‘static’’ pages you can simply enable theauto_page config setting; this means you don’t
need to declare a route handler for those pages; if a request is for/foo/bar , Dancer2 will check for a
matching view (e.g./foo/bar.tt and render it with the default layout, if found. For full details, see
the documentation for the auto_page setting.

Simplifying AJAX queries with the Ajax plugin
As anAJAX query is just anHTTP query, it’s similar to aGET or POSTroute. You may ask yourself
why you may want to use theajax keyword (from the Dancer2::Plugin::Ajax plugin) instead of a
simpleget .

perl v5.20.2 2015-06-18 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

Let’s say you have a path like /user/:user in your application. You may want to be able to serve
this page with a layout andHTML content. But you may also want to be able to call this same url from
a javascript query usingAJAX.

So, instead of having the following code:

get '/user/:user' => sub {
if (request−>is_ajax) {

c reate xml, set headers to text/xml, blablabla
header('Content−Type' => 'text/xml');
header('Cache−Control' => 'no−store, no−cache, must−revalidate');
to_xml({...})

} e lse {
template users => {...}

}
};

you can have

ajax '/user/:user' => sub {
to_xml({...}, RootName => undef);

}

and

get '/user/:user' => sub {
template users => {...}

}

Because it’s an AJAX query, you know you need to returnXML content, so the content type of the
response is set for you.

Example: Feeding graph data throughAJAX

Let us assume we are building an application that uses a plotting library to generate a graph and expects
to get its data, which is in the form of wordcount from anAJAX call.

For the graph, we need the url/data to return aJSON representation of the wordcount data. Dancer
infact has ato_json() function that takes care of theJSONencapsulation.

get '/data' => sub {
open my $fh, '<', $count_file;

my %contestant;
while (<$fh>) {

chomp;
my ($date, $who, $count) = split '\s*,\s*';

my $epoch = DateTime::Format::Flexible−>parse_datetime($date)−>epoch;
my $time = 1000 * $epoch;
$contestant{$who}{$time} = $count;

}

my @json; # data structure that is going to be JSONified

while (my ($peep, $data) = each %contestant) {
push @json, {

label => $peep,
hoverable => \1, # so t hat it becomes JavaScript's 'true'
data => [map { [$ _, $data−>{$_}] }

sort { $a <=> $b }
keys %$data],

};
}

perl v5.20.2 2015-06-18 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

my $beginning = DateTime::Format::Flexible−>parse_datetime("2010−11−01")−>epoch;
my $end = DateTime::Format::Flexible−>parse_datetime("2010−12−01")−>epoch;

push @json, {
label => 'de par',
data => [

[$beginning * 1000, 0],
[D ateTime−>now−>epoch * 1_000,

50_000
* (DateTime−>now−>epoch − $beginning)
/ ($end − $beginning)

]
],

};

to_json(\@json);
};

For more seriousAJAX interaction, there’s also Dancer2::Plugin::Ajax that adds anajax route handler
to the mix.

Because it’s an AJAX query, you know you need to returnXML content, so the content type of the
response is set for you.

Using the prefix feature to split your application
For better maintainability, you may want to separate some of your application components into
different packages. Let’s say we have a simple web app with an admin section and want to maintain
this in a different package:

package myapp;
use Dancer2;
use myapp::admin;

prefix undef;

get '/' => sub {...};

1;

package myapp::admin;
use Dancer2 appname => 'myapp';

prefix '/admin';

get '/' => sub {...};

1;

The following routes will be generated for us:

− get /
− get /admin/
− head /
− head /admin/

By default, a separate application is created for every package that uses Dancer2. Theappname tag is
used to collect routes and hooks into a single Dancer2 application. In the above example,appname
=> 'myapp' adds the routes frommyapp::admin to the routes of the appmyapp.

When using multiple applications please ensure that your path definitions do not overlap. For example,
if using a default route as described above, once a request is matched to the default route then no
further routes (or applications) would be reached.

perl v5.20.2 2015-06-18 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

Delivering custom error pages
At the Core

In Dancer2, creating new errors is done by creating a new Dancer2::Core::Error

my $oopsie = Dancer2::Core::Error−>new(
status => 418,
message => "This is the Holidays. Tea not acceptable. We want eggnog.",
app => $app,

)

If not given, the status code defaults to a 500, there is no need for a message if we feel taciturn, and
while the$app (which is aDancer::Core::Appobject holding all the pieces of information related to
the current request) is needed if we want to take advantage of the templates, we can also do without.

However, to be seen by the end user, we hav eto populate the Dancer2::Core::Response object with the
error’s data. This is done via:

$oopsie−>throw($response);

Or, if we want to use the response object already present in the$app (which is usually the case):

$oopsie−>throw;

This populates the status code of the response, sets its content, and throws a halt() in the dispatch
process.

What it will look like

The error object has quite a few ways to generate its content.

First, it can be explicitly given

my $oopsie = Dancer::Core::Error−>new(
content => '<html><body><h1>OMG</h1></body></html>',

);

If the $context was giv en, the error will check if there is a template by the name of the status code
(so, say you’re using Template Toolkit, 418.tt) and will use it to generate the content, passing it the
error’s $message , $status code and$title (which, if not specified, will be the standard http
error definition for the status code).

If there is no template, the error will then look for a static page (to continue with our example,
418.html) in thepublic/directory.

And finally, if all of that failed, the error object will fall back on an internal template.

Errors in Routes

The simplest way to use errors in routes is:

get '/xmas/gift/:gift' => sub {
die "sorry, we're all out of ponies\n"

if param('gift') eq 'pony';
};

The die will be intercepted by Dancer, converted into an error (status code 500, message set to the
dying words) and passed to the response.

In the cases where more control is required,send_error() is the way to go:

get '/glass/eggnog' => sub {
send_error "Sorry, no eggnog here", 418;

};

And if total control is needed:

perl v5.20.2 2015-06-18 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

get '/xmas/wishlist' => sub {
Dancer::Core::Error−>new(

response => response(),
status => 406,
message => "nothing but coal for you, I'm afraid",
template => 'naughty/index',

)−>throw unless user_was_nice();

...;
};

Template Toolkit’s WRAPPER directive in Dancer2
Dancer2 already provides a WRAPPER-like ability, which we call a ‘‘layout’’. The reason we don’t
use Template Toolkit’s WRAPPER (which also makes us incompatible with it) is because not all
template systems support it. In fact, most don’t.

However, you might want to use it, and be able to defineMETA variables and regular Template::Toolkit
variables.

These few steps will get you there:

• Disable the layout in Dancer2

You can do this by simply commenting (or removing) thelayout configuration in the config file.

• Use the Template Toolkit template engine

Change the configuration of the template to Template Toolkit:

in c onfig.yml
template: "template_toolkit"

• Tell the Template Toolkit engine which wrapper to use

in c onfig.yml
. ..
engines:

template:
template_toolkit:

WRAPPER: layouts/main.tt

Done! Everything will work fine out of the box, including variables andMETA variables.

Accessing configuration information from a separate script
You may want to access your webapp’s configuration from outside your webapp. You could, of course,
use theYAML module of your choice and load your webapps’s config.yml , but chances are that this
is not convenient.

Use Dancer2 instead. You can simply use the values fromconfig.yml and some additional default
values:

bin/show_app_config.pl
use Dancer2;
printf "template: %s\n", config−>{'template'}; # simple
printf "log: %s\n", config−>{'log'}; # undef

Note thatconfig−>{log} should result in an uninitialized warning on a default scaffold since the
environment isn’t loaded and log is defined in the environment and not inconfig.yml . Hence
undef .

Dancer2 will load yourconfig.yml configuration file along with the correct environment file
located in yourenvironments directory.

The environment is determined by two environment variables in the following order:

• DANCER_ENVIRONMENT

• PLACK_ENV

If neither of those is set, it will default to loading the development environment (typically

perl v5.20.2 2015-06-18 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

$webapp/environment/development.yml).

If you wish to load a different environment, you need to override these variables.

You can call your script with the environment changed:

$ PLACK_ENV=production perl bin/show_app_config.pl

Or you can override them directly in the script (less recommended):

BEGIN { $ENV{'DANCER_ENVIRONMENT'} = 'production' }
use Dancer2;

...

Using DBIx::Class
DBIx::Class, also known asDBIC, is one of the many Perl ORM (Object Relational Mapper). It is easy
to useDBIC in Dancer2 using the Dancer2::Plugin::DBIC.

An example

This example demonstrates a simple Dancer2 application that allows one to search for authors or
books. The application is connected to a database, that contains authors, and their books. The website
will have one single page with a form, that allows one to query books or authors, and display the
results.

Creating the application

$ dancer2 −a bookstore

To use the Template Toolkit as the template engine, we specify it in the congiguration file:

add in bookstore/config.yml
template: template_toolkit

Creating the view

We need a view to display the search form, and below, the results, if any. The results will be fed by the
route to the view as an arrayref of results. Each result is ahashref, with a author key containing the
name of the author, and a books key containing anarrayrefof strings : the books names.

example of a list of results
[{ a uthor => 'author 1',

books => ['book 1', 'book 2'],
},
{ a uthor => 'author 2',

books => ['book 3', 'book 4'],
}

]

bookstore/views/search.tt <p> <form action=‘‘/search’’> Search query: <input type=‘‘text’’
name=‘‘query’’ /> </form> </p>

An example of the view, displaying the search form, and the results, if any:

<% IF query.length %>
<p>Search query was : <% query %>.</p>
<% IF results.size %>

Results:

<% FOREACH result IN results %>

Author: <% result.author.replace("((?i)$query)", '$1') %>

<% FOREACH book IN result.books %>

<% book.replace("((?i)$query)", '$1') %>
<% END %>

<% END %>
<% ELSE %>

perl v5.20.2 2015-06-18 6

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

No result
<% END %>

<% END %>

Creating a Route

A simple route, to be added in thebookstore.pmmodule:

add in bookstore/lib/bookstore.pm
get '/search' => sub {

my $query = params−>{'query'};
my @results = ();

if (length $query) {
@results = _perform_search($query);

}

template search => {
query => $query,
results => \@results,

};
};

Creating a database

We create a SQLite file database:

$ s qlite3 bookstore.db
CREATE TABLE author(

id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
firstname text default '' not null,
lastname text not null);

CREATE TABLE book(
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
author INTEGER REFERENCES author (id),
title text default '' not null);

Now, to populate the database with some data, we use DBIx::Class:

populate_database.pl
package My::Bookstore::Schema;
use base qw(DBIx::Class::Schema::Loader);
package main;
my $schema = My::Bookstore::Schema−>connect('dbi:SQLite:dbname=bookstore.db');
$schema−>populate('Author', [

[' firstname', 'lastname'],
[' Ian M.', 'Banks'],
[' Richard', 'Matheson'],
[' Frank', 'Herbert'],

]);
my @books_list = (

[' Consider Phlebas', 'Banks'],
[' The Player of Games', 'Banks'],
[' Use of Weapons', 'Banks'],
[' Dune', 'Herbert'],
[' Dune Messiah', 'Herbert'],
[' Children of Dune', 'Herbert'],
[' The Night Stalker', 'Matheson'],
[' The Night Strangler', 'Matheson'],

);
t ransform author names into ids
$_−>[1] = $schema−>resultset('Author')−>find({ lastname => $_−>[1] })−>id

perl v5.20.2 2015-06-18 7

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

foreach (@books_list);
$schema−>populate('Book', [

[' title', 'author'],
@books_list,

]);

Then run it in the directory wherebookstore.dbsits:

perl populate_database.db

Using Dancer2::Plugin::DBIC

There are 2 ways of configuringDBIC to understand how the data is organized in your database:

• Use auto-detection

The configuration file needs to be updated to indicate the use of the Dancer2::Plugin::DBIC
plugin, define a new DBIC schema calledbookstoreand to indicate that this schema is connected
to the SQLite database we created.

add in bookstore/config.yml
plugins:

DBIC:
bookstore:

dsn: "dbi:SQLite:dbname=bookstore.db"

Now, _perform_search can be implemented using Dancer2::Plugin::DBIC. The plugin gives
you access to an additional keyword calledschema, which you give the name of schema you want
to retrieve. It returns aDBIx::Class::Schema::Loader which can be used to get a
resultset and perform searches, as per standard usage of DBIX::Class.

add in bookstore/lib/bookstore.pm
sub _perform_search {

my ($query) = @_;
my $bookstore_schema = schema 'bookstore';
my @results;
s earch in authors
my @authors = $bookstore_schema−>resultset('Author')−>search({

−or => [
firstname => { like => "%$query%" },
lastname => { l ike => "%$query%" },

]
});
push @results, map {

{ a uthor => join(' ', $_−>firstname, $_−>lastname),
books => [],

}
} @authors;
my %book_results;
s earch in books
my @books = $bookstore_schema−>resultset('Book')−>search({

title => { like => "%$query%" },
});
foreach my $book (@books) {

my $author_name = join(' ', $book−>author−>firstname, $book−>author−>lastname);
push @{$book_results{$author_name}}, $book−>title;

}
push @results, map {

{ a uthor => $_,
books => $book_results{$_},

}
} k eys %book_results;
return @results;

}

perl v5.20.2 2015-06-18 8

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

• Use home made schema classes

The DBIx::Class::MooseColumns lets you write theDBIC schema classes using Moose. The
schema classes should be put in a place that Dancer2 will find. A good place is inbookstore/lib/.

Once your schema classes are in place, all you need to do is modifyconfig.ymlto specify that you
want to use them, instead of the default auto-detection method:

c hange in bookstore/config.yml
plugins:

DBIC:
bookstore:

schema_class: My::Bookstore::Schema
dsn: "dbi:SQLite:dbname=bookstore.db"

Starting the application: Our bookstore lookup application can now be started using the built-in
server:

s tart the web application
bookstore/bin/app.pl

Authentication
Writing a form for authentication is simple: we check the user credentials on a request and decide
whether to continue or redirect them to a form. The form allows them to submit their username and
password and we save that and create a session for them so when they now try the original request, we
recognize them and allow them in.

Basic Application

The application is fairly simple. We hav ea route that needs authentication, we have a route for showing
the login page, and we have a route for posting login information and creating a session.

package MyApp;
use Dancer2;

get '/' => sub {
session('user')

or redirect('/login');

template index => {};
};

get '/login' => sub {
template login => {};

};

post '/login' => sub {
my $username = param('username');
my $password = param('password');
my $redir_url = param('redirect_url') || '/login';

$username eq 'john' && $password eq 'correcthorsebatterystaple'
or redirect $redir_url;

session user => $username;
redirect $redir_url;

};

Tiny Authentication Helper

Dancer2::Plugin::Auth::Tiny allows you to abstract away not only the part that checks whether the
session exists, but to also generate a redirect with the right path and returnURL.

We simply have to define what routes needs a login using Auth::Tiny’sneeds keyword.

perl v5.20.2 2015-06-18 9

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

get '/' => needs login => sub {
template index => {};

};

It creates a proper returnURL usinguri_for and the address from which the user arrived.

We can thus decorate all of our private routes to require authentication in this manner. If a user does not
have a session, it will automatically forward it to/login, in which we would render a form for the user
to send a login request.

Auth::Tiny even provides a new parameter,return_url , which can be used to send the user back to
their original requested path.

Password Hashing

Dancer2::Plugin::Passphrase provides a simple passwords-as-objects interface with sane defaults for
hashed passwords which you can use in your web application. It usesbcrypt as the default but supports
anything the Digest interface does.

Assuming we have the original user-creation form submitting a username and password:

package MyApp;
use Dancer2;
use Dancer2::Plugin::Passphrase;
post '/register' => sub {

my $username = param('username');
my $password = passphrase(param('password'))−>generate;

$password is now a hashed password object
save_user_in_db($username, $password−>rfc2307);

template registered => { success => 1 };
};

We can now add thePOST method for verifying that username and password:

post '/login' => sub {
my $username = param('username');
my $password = param('password');
my $saved_pass = fetch_password_from_db($username);

if (passphrase($password)−>matches($saved_pass)) {
session user => $username;
redirect param('return_url') || '/';

}

l et's render instead of redirect...
template login => { error => 'Invalid username or password' };

};

Writing a REST application
With Dancer2, it’s easy to write REST applications. Dancer2 provides helpers to serialize and
deserialize for the following data formats:

JSON
YAML
XML
Data::Dumper

To activate this feature, you only have to set theserializer setting to the format you require, for
instance in your config file:

serializer: JSON

Or directly in your code:

set serializer => 'JSON';

perl v5.20.2 2015-06-18 10

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

From now, all hashrefs or arrayrefs returned by a route will be serialized to the format you chose, and
all data received from POST or PUT requests will be automatically deserialized.

get '/hello/:name' => sub {
t his structure will be returned to the client as
{ "name":"$name"}
return {name => params−>{name}};

};

It’s possible to let the client choose which serializer to use. For this, use themutable serializer, and
an appropriate serializer will be chosen from theContent−Type header.

It’s also possible to return a custom error using the send_error keyword. When you don’t use a
serializer, the send_error function will take a string as first parameter (the message), and an
optionalHTTP code. When using a serializer, the message can be a string, an arrayref or a hashref:

get '/hello/:name' => sub {
if (...) {

send_error("you can't do that");
or
send_error({reason => 'access denied', message => "no"});

}
};

The content of the error will be serialized using the appropriate serializer.

Using the serializer
Serializers essentially do two things:

• Deserialize incoming requests

When a user makes a request with serialized input, the serializer automatically deserializes it into
actual input parameters.

• Serialize outgoing responses

When you return a data structure from a route, it will automatically serialize it for you before
returning it to the user.

Configuring

In order to configure a serializer, you just need to pick which format you want for encoding/decoding
(from Dancer2::Serializer) and set it up using theserializer configuration keyword.

It is recommended to explicitly add it in the actual code instead of the configuration file so it doesn’t
apply automatically to every app that reads the configuration file (unless that’s what you want):

package MyApp;
use Dancer2;
set serializer => 'JSON'; # Dancer2::Serializer::JSON

...

Using

Now that we have a serializer set up, we can just return data structures:

get '/' => sub {
return { resources => \%resources };

};

When we return this data structure, it will automatically be serialized intoJSON. No other code is
necessary.

We also now receive requests inJSON:

post '/:entity/:id' => sub {
my $entity = param('entity');
my $id = param('id');

perl v5.20.2 2015-06-18 11

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

i nput which was sent serialized
my $user = param('user');

...
};

We can now make a serialized request:

$ c url −X POST http://ourdomain/person/16 −d '{"user":"sawyer_x"}'

App-specific feature

Serializers are engines. They affect a Dancer Application, which means that once you’ve set a
serializer,all routes within that package will be serialized and deserialized. This is how the feature
works.

As suggested above, if you would like to hav eboth, you need to create another application which will
not be serialized.

A common usage for this is anAPI providing serialized endpoints (and receiving serialized requests)
and providing rendered pages.

MyApp.pm
package MyApp;
use Dancer2;

another useful feature:
set auto_page => 1;

get '/' => sub { template 'index' => {...} };

MyApp/API.pm
package MyApp::API;
use Dancer2;
set serializer => 'JSON'; # or any other serializer

get '/' => sub { +{ resources => \%resources, ... } };

user−specific routes, for example
prefix => '/users' => sub {

get '/view' => sub {...};
get '/view/:id' => sub {...};
put '/add' => sub {...}; # automatically deserialized params

};

...

Then those will be mounted together for a single app:

handler: app.pl:
use MyApp;
use MyApp::API;
use Plack::Builder;

builder {
mount '/' => MyApp−>to_app;
mount '/api' => MyApp::API−>to_app;

};

An example: WritingAPI interfaces

This example demonstrates an app that makes a request to a weatherAPI and then displays it
dynamically in a web page.

Other than Dancer2 for defining routes, we will use HTTP::Tiny to make the weatherAPI request,
JSON to decode it fromJSON format, and finally File::Spec to provide a fully-qualified path to our

perl v5.20.2 2015-06-18 12

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Dancer2::Cookbook(3pm) UserContributed Perl Documentation Dancer2::Cookbook(3pm)

template engine.

use JSON;
use Dancer2;
use HTTP::Tiny;
use File::Spec;

Configuration

We use the Template::Toolkit template system for this app.Dancer searches for our templates in our
views directory, which defaults toviewsdirectory in our current directory. Since we want to put our
template in our current directory, we will configure that. However, Template::Toolkitdoes not want us
to provide a relative path without configuring it to allow it. This is a security issue. So, we’re using
File::Spec to create a full path to where we are.

We also unset the default layout, so Dancer won’t try to wrap our template with another one. This is a
feature in Dancer to allow you to wrap your templates with a layout when your templating system
doesn’t support it. Since we’re not using a layout here, we don’t need it.

set template => 'template_toolkit'; # s et template engine
set layout => undef; # disable layout
set views => File::Spec−>rel2abs('.'); # full path to views

Now, we define ourURL:

my $url = 'http://api.openweathermap.org/data/2.5/weather?id=5110629&units=imperial';

Route

We will define a main route which, upon a request, will fetch the information from the weatherAPI,
decode it, and then display it to the user.

Route definition:

get '/' => sub {
...

};

Editing the stub of route dispatching code, we start by making the request and decoding it:

f etch data
my $res = HTTP::Tiny−>new−>get($url);

decode request
my $data = decode_json $res−>{'content'};

The data is not just a flat hash. It’s a deep structure. In this example, we will filter it for only the simple
keys in the retrieved data:

my $metrics = { map +(
ref $data−>{$_} ? () : ($_ => $data−>{$_})

), keys %{$data} };

All that is left now is to render it:

template index => { metrics => $metrics };

NON-STANDARD STEPS
Turn ing off warnings

The warnings pragma is already used when one loads Dancer2. However, if you really do not want
the warnings pragma (for example, due to an undesired warning about use of undef values), add a
no warnings pragma to the appropriate block in your module or psgi file.

AUTHOR
Dancer Core Developers

COPYRIGHT AND LICENSE
This software is copyright (c) 2015 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-06-18 13

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

