Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)
NAME
Dancer2::Cookbook — Example—den quick—start to the Dancer2 web frawark
VERSION
version 0.160003
DESCRIPTION

A quick-start guide with examples to get you up and running with the Dancer2 welviikn€his
document will be twice as useful if you finish reading the manual (Dancer2::Manual) first, but that is
not required... :-)

BEGINNER'S DANCE
A simple Dancer2 web app
Dancer2 has been designed to be easy to work witk tivial to write a simple web app, but still has
the power to work with larger projectso &art with, lets make an ncredibly simple “Hello Vérld”
example:

#!/usr/bin/env perl
use Dancerz;

get '/hello/:name’ => sub {
return "Why, hello there " . params—>{name};

3

dance;

Yes - the abee is a Ully-functioning web app; running that script will launch a webserver listening on
the default port (3000). Noyou can ma& a equest:

$ curl http://localhost:3000/hello/Bob
Why, hello there Bob

and it will say hello. Thename part is a named parameter within the route specification, wiahse v
is made wailable throughparams .

Note that you dort’need to use thstrict andwarnings pragmas; the are already loaded by
Dancer2.

Default Route
In case you want tovaid a404 eror, or handle multiple routes in the same way and you tdee like
configuring all of them, you can set up a default route handler.

The default route handler will handleyarequest that doedrget served by another route.
All you need to do is set up the following route asléis¢route:

any gr{.*} =>sub {
status 'not_found';
template 'special_404', { path => request—>path };
2
Then you can set up the templatelih:
You tried to reach [% path %], but it is unavailable at the moment.

Please try again or contact us at <contact AT example DOT com>.

Using theauto_page feature for automatic route creation
For simple “static” pages you can simply enable #ugto _page config setting; this means you don’
need to declare a route handler for those pages; if a requestfamfbar , Dancer2 will check for a
matching viev (e.g./foo/bar.tt and render it with the default layout, if foundrFull details, see
the documentation for the auto_page setting.

Simplifying AJAX queries with the Ajax plugin
As anAJAX query is just aHTTP query it's dmilar to aGET or POSTroute. You may ask yourself
why you may want to use th@ax keyword (from the Dancer2::Plugin::Ajax plugin) instead of a
simpleget .

OF A0

= perivs.20.2 2015-06-18 1

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

o

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

Let's say you hae a path like /user/:user in your application. You may ant to be able to sesv
this page with a layout ardiTML content. But you may also want to be able to call this same url from
a javascript query usingJAX.

So, instead of having the following code:

get '/user/:user' => sub {
if (request—>is_ajax) {
create xml, set headers to text/xml, blablabla
header('Content-Type' => 'text/xml");
header('Cache—-Control' => 'no-store, no—cache, must-revalidate');

to_xml({...})
} else{
template users =>{...}
}
2
you can hee

ajax 'luser/:user' => sub {
to_xml({...}, RootName => undef);
}

and

get 'luser/:user' => sub {
template users =>{...}
}

Because i an AJAX query you knav you need to returiXML content, so the content type of the
response is set for you.

Example: Feeding graph data throughAX

Let us assume we are building an application that uses a plotting library to generate a grapbcsd e
to get its data, which is in the form of wordcount fromaaaXx call.

For the graph, we need the udatato return aJSONrepresentation of the wordcount data. Dancer
infact has @o_json() function that takes care of ti8ONencapsulation.

get '/data’ => sub {
open my $fh, '<', $count_file;

my %contestant;
while (<$fh>) {
chomp;
my ($date, $who, $count) = split \s*\s*;

my $epoch = DateTime::Format::Flexible->parse_datetime($date)—>epoch;
my $time = 1000 * $epoch;
$contestant{$who}{$time} = $count;

}

my @json; # data structure that is going to be JSONified

while (my ($peep, $data) = each %contestant) {
push @json, {
label => $peep,
hoverable =>\1, # so t hatit becomes JavaScript's 'true’
data =>[map {[9$ _, Sdata—>{$ }]1}
sort { $a <=>$b }
keys %$data],

perl v5.20.2 2015-06-18 2

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

o

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

my $beginning = DateTime::Format::Flexible->parse_datetime("2010-11-01")->epoch;

my $end = DateTime::Format::Flexible->parse_datetime("2010-12-01")—>epoch;

push @json, {
label => 'de par’,
data => [
[$beginning * 1000, 0],
[D ateTime->now->epoch *1_000,
50_000
* (DateTime—>now->epoch - $beginning)
! ($end — $beginning)

2
to_json(\@json);
2
For more seriousAJAX interaction, there dso Dancer2::Plugin::Ajax that adds ajax route handler
to the mix.

Because i8 an AJAX query you knav you need to returiXML content, so the content type of the
response is set for you.

Using the prefix feature to lit your application
For better maintainability you may want to separate some of your application components into
different packages. Laet'say we hae a $mple web app with an admin section and want to maintain
this in a different package:

package myapp;
use Dancer2;
use myapp::admin;

prefix undef;
get'/'=>sub{...};
1

package myapp::admin;
use Dancer2 appname =>'myapp’;

prefix 'fadmin’;
get'/'=>sub{...};

1
The following routes will be generated for us:

- get/

- get/admin/
- head/

- head /admin/

By default, a separate application is created f@ryepackage that uses Dancer2. Hppname tag is
used to collect routes and hooks into a single Dancer2 application. In e ebmple,appname
=>'myapp' adds the routes fromyapp::admin to the routes of the appyapp.

When using multiple applications please ensure that your path definitions deerap.oFor &le,
if using a default route as described \ahmnce a request is matched to the default route then no
further routes (or applications) would be reached.

perl v5.20.2 2015-06-18 3

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

Delivering custom error pages
At the Core

In Dancer2, creating meerrors is done by creating amdancer2::Core::Error

my $oopsie = Dancer2::Core::Error—>new(
status => 418,
message => "This is the Holidays. Tea not acceptable. We want eggnog.",

app => $app,
)

If not given, the status code arflts to a 500, there is no need for a message if we feel taciturn, and
while the$app (which is aDancer::Core::Appobject holding all the pieces of information related to
the current request) is needed if we want te talkvantage of the templates, we can also do without.

However, to be £en by the end usexe haveto populate the Dancer2::Core::Response object with the
error’s data. This is done via:

$oopsie—>throw($response);

Or, if we want to use the response object already present $aghe (which is usually the case):
$oopsie—>throw;

This populates the status code of the response, sets its content, sl ahadt() in the dispatch

process.

What it will look like

The error object has quite axfevays to generate its content.

First, it can be explicitly gien

my $oopsie = Dancer::Core::Error—>new(
content => '<html><body><h1>0OMG</h1></body></html>',
);
If the $context was gven, the error will check if there is a template by the name of the status code
(so, say youe using Template dblkit, 418.t) and will use it to generate the content, passing it the
error's $message, $status code andstitle (which, if not specified, will be the standard http
error definition for the status code).

If there is no template, the error will then look for a static page (to continue withxampke,
418.htm) in the public/ directory.

And finally, if all of that failed, the error object will fall back on an internal template.
Errors in Routes
The simplest way to use errors in routes is:

get '/xmas/gift/.gift' => sub {

die "sorry, we're all out of ponies\n”
if param('gift") eq 'pony’;

%
The die will be intercepted by Danceprverted into an error (status code 500, message set to the
dying words) and passed to the response.
In the cases where more control is requissshd_error() is the way to go:

get '/glass/eggnog’ => sub {
send_error "Sorry, no eggnog here", 418;
2

And if total control is needed:

perl v5.20.2 2015-06-18 4

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

get '/xmas/wishlist' => sub {
Dancer::Core::Error—->new(
response => response(),
status => 406,
message => "nothing but coal for you, I'm afraid",
template => 'naughty/index’,
)—>throw unless user_was_nice();

%
Template Toolkit's WRAPPER directive in Dancer2
Dancer2 already provides a WRAPPERelibility, which we call a‘layout”. The reason we dot’
use Template dolkit's WRAPPER (which also makes us incompatible with it) is because not all
template systems support it. In fact, most don't.

However, you might vant to use it, and be able to defMETA variables and regularemplate::Toolkit
variables.

These fav steps will get you there:
» Disable the layout in Dancer2

You can do this by simply commenting (or removing) ldngout configuration in the config file.
» Use the Template Toolkit template engine

Change the configuration of the template to Template Toolkit:

in ¢ onfig.yml
template: "template_toolkit"

» Téel the Template Toolkit engine which wrapper to use

in ¢ onfig.yml
..
engines:
template:
template_toolkit:
WRAPPER: layouts/main.tt

Done! Everything will work fine out of the box, including variables BffA variables.

Accessing configuration information from a separate script
You may want to access your webappdnfiguration from outside your webappmuwcould, of course,
use thevAML module of your choice and load your webappsnfig.yml , but chances are that this
iS not cowenient.

Use Dancer2 insteado¥ can simply use the values fraonfig.yml and some additional chailt
values:

bin/show_app_config.pl

use Dancer2;

printf "template: %s\n", config—>{"template'}; # simple

printf "log: %s\n", config—>{'log'}; # undef

Note thatconfig—>{log} should result in an uninitializedarning on a default scaffold since the
ervironment isnt loaded and log is defined in the environment and natoifig.yml . Hence
undef .

Dancer2 will load yourconfig.yml configuration file along with the correctv@nment file
located in youenvironments directory.

The environment is determined byawnvironment variables in the following order:

. DANCER_ENVIRONMENT

. PLACK_ENV

If neither of those is set, it will default to loading thevelepment emironment (typically

perl v5.20.2 2015-06-18 5

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

$webapp/environment/development.yml).
If you wish to load a different environment, you needverride these variables.
You can call your script with the environment changed:
$ PLACK_ENV=production perl bin/show_app_config.pl
Or you can werride them directly in the script (less recommended):

BEGIN { SENV{'DANCER_ENVIRONMENT'} = 'production' }
use Dancer2;

Using DBIx::Class
DBIx::Class, also known &BBIC, is one of the manPerl ORM (Object Relational Mappégr It is easy
to useDBIC in Dancer2 using the Dancer2::Plugin::DBIC.

An example

This example demonstrates a simple Dancer2 application thatsatinoe to search for authors or
books. The application is connected to a database, that contains authors, and their books. The website
will have me single page with a form, that allows one to query books or authors, and display the
results.

Creating the application
$ dancer2 —a bookstore
To use the Template Toolkit as the template engine, we specify it in the congiguration file:

add in bookstore/config.yml|
template: template_toolkit

Creating the view

We reed a vier to display the search form, and beiahe results, if ap The results will be fed by the
route to the vier as an arayref of results. Each result ishashref with a author ky mntaining the
name of the authpand a books &y mntaining ararrayrefof strings : the books names.

example of a list of results
[{ a uthor =>"author 1/,
books => ['book 1', 'book 2'],
2
{ a uthor =>"author 2',
books => ['book 3', 'book 4'],
}
]

bookstore/vigvs/search.tt <p> <form actiorifsearch’™> Search query: <input typetext”
name="“query’ /> </form> </p>

An example of the vig, displaying the search form, and the results, if any:

<% IF query.length %>
<p>Search query was : <% query %>.</p>
<% IF results.size %>
Results:

<% FOREACH result IN results %>
Author: <% result.author.replace("((?))$query)”, '$1") %>

<% FOREACH book IN result.nooks %>
<% book.replace("((?i)$query)", '$1") %>
<% END %>

<% END %>
<% ELSE %>

perl v5.20.2 2015-06-18 6

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

No result
<% END %>
<% END %>

Creating a Route
A simple route, to be added in theokstoepmmodule:

add in bookstore/lib/bookstore.pm

get /search' => sub {
my $query = params—>{'query'};
my @results = ();

if (length $query) {
@results = _perform_search($query);
}

template search =>{
query => $query,
results => \@results,
h
h
Creating a database
We aeate a SQLite file database:

$ sqlite3 bookstore.db

CREATE TABLE author(
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
firstname text default " not null,
lastname text not null);

CREATE TABLE book(
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
author INTEGER REFERENCES author (id),
title text default " not null);

Now, to populate the database with some data, we use DBIx::Class:

populate_database.pl
package My::Bookstore::Schema,;
use base qw(DBIx::Class::Schema::Loader);
package main;
my $schema = My::Bookstore::Schema->connect('dbi:SQLite:dbname=bookstore.db');
$schema—>populate('Author’, [
[' firstname', 'lastname’],

' The Night Stalker', ‘Matheson'],
' The Night Strangler’, 'Matheson'],

[" lan M., '‘Banks'],
[' Richard’, 'Matheson,
[" Frank, 'Herbert'],

D;

my @books_list = (
[' Consider Phlebas', '‘Banks' 1
[' The Player of Games', 'Banks' 1s
[' Use of Weapons', '‘Banks' 1
[' Dune', 'Herbert' 1,
[' Dune Messiah', 'Herbert'],
[' Children of Dune', 'Herbert'],
[
[

);
t ransform author names into ids
$_—>[1] = $schema->resultset('Author’)—>find({ lastname => $_->[1] })->id

o
=]

EEEd perivs.20.2 2015-06-18 7

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

o

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

foreach (@books_list);
$schema—>populate('Book’, [
[' title', 'author'],
@books_list,
D;

Then run it in the directory whelmokstoe.db sits:
perl populate_database.db
Using Dancer2::Plugin::DBIC
There are 2 ways of configurimBIC to understand hothe data is @anized in your database:
* Use auto-detection

The configuration file needs to be updated to indicate the use of the Dancer2::Plugin::DBIC
plugin, define a ne DBIC schema callethookstoreand to indicate that this schema is connected
to the SQLite database we created.

add in bookstore/config.yml
plugins:
DBIC:
bookstore:
dsn: "dbi:SQLite:dbname=bookstore.db"

Now, perform_search can be implemented using Dancer2::Plugin::DBIC. The plugiesgi
you access to an additionadykvord calledschema which you gve the name of schema yolwant
to retrieve. It returns aDBIx::Class::Schema::Loader which can be used to get a
resultset and perform searches, as per standard usage of DBIX::Class.

add in bookstore/lib/bookstore.pm
sub _perform_search {
my ($query) = @_;
my $bookstore_schema = schema 'bookstore’;
my @results;
search in authors
my @authors = $bookstore_schema—>resultset('Author’)—>search({
—or =>|
firstname => { like => "%3$query%" },
lastname => { | ike =>"%3$query%" },
]
D
push @results, map {
{ a uthor => join(" ', $_—>firstname, $_->lastname),
books => [],

}
} @authors;
my %book_results;
search in books
my @books = $bookstore_schema—->resultset('Book')->search({
title => { like => "%$query%" },
D
foreach my $book (@books) {
my $author_name = join(" ', $book—>author—>firstname, $book->author->lastname);
push @{$book_results{$author_name}}, $book->title;

}
push @results, map {
{ author=>$_,
books => $book_results{$ },
}

} k eys %book_results;
return @results;

perl v5.20.2 2015-06-18 8

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

. Use home made schema classes

The DBIx::Class::MooseColumns lets you write thBIC schema classes using Moose. The
schema classes should be put in a place that Dancer2 will find. A good plalbeakstore/lib/

Once your schema classes are in place, all you need to do is mmdfify.ymito specify that you
want to use them, instead of the default auto-detection method:

change in bookstore/config.yml
plugins:
DBIC:
bookstore:
schema_class: My::Bookstore::Schema
dsn: "dbi:SQLite:dbname=bookstore.db"

Starting the application: Our bookstore lookup application canwbe darted using theblt-in
server:

start the web application
bookstore/bin/app.pl

Authentication
Writing a form for authentication is simple: we check the user credentials on a request and decide
whether to continue or redirect them to a form. The formaalithem to submit their username and
passverd and we sz that and create a session for them so whennbe try the original request, we
recognize them and allothem in.

Basic Application

The application isdirly simple. W havea route that needs authentication, weeha pute for shaing
the login page, and we V®a pute for posting login information and creating a session.

package MyApp;
use Dancerz;

get /' => sub {
session('user')
or redirect(/login’);

template index => {};

3

get /login' => sub {
template login => {};

2

post '/login' => sub {
my $username = param(‘username');
my $password = param(‘password');

my $redir_url = param(‘redirect_url") || /login’;

$username eq 'john' && $password eq 'correcthorsebatterystaple’
or redirect $redir_url;

session user => $username;
redirect $redir_url;

2
Tiny Authentication Helper

Dancer2::Plugin::Auth::Tip alows you to abstractveay not only the part that checks whether the
session exists, but to also generate a redirect with the right path andureturn

We smply have o define what routes needs a login using Auth::Timgeds keyword.

perl v5.20.2 2015-06-18 9

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

get /' => needs login => sub {
template index => {};
%
It creates a proper retutiRL usinguri_for and the address from which the usenadi

We @an thus decorate all of our yate routes to require authentication in this manifier user does not
have a gssion, it will automatically forward it thogin, in which we would render a form for the user
to send a login request.

Auth::Tiny even provides a ne/ parameterreturn_url ~ , which can be used to send the user back to
their original requested path.

Passwod Hashing

Dancer2::Plugin::Bssphrase pvides a simple passwords-as-objects interface with sane defaults for
hashed passwords which you can use in your web application. barges as the default but supports
anything the Digest interface does.

Assuming we hee the original user-creation form submitting a username and password:

package MyApp;
use Dancer2;
use Dancer2::Plugin::Passphrase;
post '/register' => sub {
my $username = param(‘username');
my $password = passphrase(param(‘password'’))->generate;

$password is now a hashed password object
save_user_in_db($username, $password—->rfc2307);

template registered => { success => 1 };
2
We an nav add thePOST method for verifying that username and password:
post '/login' => sub {
my $username = param(‘username’);

my $password param('password");
my $saved_pass = fetch_password_from_db($username);

if (passphrase($password)—->matches($saved_pass)) {
session user => $username;
redirect param(‘return_url") || '/';

}

| et's render instead of redirect...
template login => { error => 'Invalid username or password' };

2
Writing a REST application

With Dancer2, is easy to write REST applications. Dancer2 provides helpers to serialize and
deserialize for the following data formats:

JSON

YAML

XML
Data::Dumper

To ectivate this feature, you only kia o set theserializer setting to the format you require, for
instance in your config file:

serializer: JISON
Or directly in your code:
set serializer => 'JSON';

perl v5.20.2 2015-06-18 10

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

From nav, dl hashrefs or arrayrefs returned by a route will be serialized to the format you chose, and
all data recaied from POST or PUT requests will be automatically deserialized.

get '/hello/:name’ => sub {
t his structure will be returned to the client as
{"name":"$name"}
return {name => params—>{name}};

2
It's possible to let the client choose which serializer to usetlits, use thenutable serializer and
an appropriate serializer will be chosen fromG@matent-Type header.

It's dso possible to return a custom error using the send_eesgvokd. When you don’use a
serializer the send_error function will take a ¢ring as first parameter (the message), and an
optionalHTTP code. When using a serializéte message can be a string, an arrayref or a hashref:

get '/hello/:name’ => sub {
if (..){
send_error("you can't do that");
or
send_error({reason => 'access denied', message => "no"});

2
The content of the error will be serialized using the appropriate serializer.

Using the serializer
Serializers essentially do twhings:

» Deserialize incoming requests

When a user makes a request with serialized input, the serializer automatically deserializes it into
actual input parameters.

» Serialize outgoing responses

When you return a data structure from a route, it will automatically serialize it for you before
returning it to the user.

Configuring

In order to configure a serializgmou just need to pick which format you want for encoding/decoding
(from Dancer2::Serializer) and set it up usingshgalizer configuration kyword.

It is recommended to explicitly add it in the actual code instead of the configuration file so it doesn’
apply automatically tovery app that reads the configuration file (unless shatat you want):

package MyApp;

use Dancer2;

set serializer => 'JSON'; # Dancer2::Serializer::JSON

Using
Now that we hge a ®rializer set up, we can just return data structures:
get'/"=>sub{
return { resources => \%resources };
2
When we return this data structure, it will automatically be serializedJ®®N.No other code is
necessary.

We dso naw receve requests idSON:

post '/:entity/:id' => sub {
my $entity = param(‘entity");
my $id = param('id’;

perl v5.20.2 2015-06-18 11

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

o

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

i nput which was sent serialized
my $user = param(‘user');

2
We @an nav make a ®rialized request:

$ curl =X POST http://ourdomain/person/16 —d '{"user":"sawyer_x"}
App-specific feature

Serializers are engines. Theffect a Dancer Application, which means that once wouet a
serializer,all routes within that package will be serialized and deserialized. Thisnigh® feature
works.

As suggested abe, if you would like to haveboth, you need to create another application which will
not be serialized.

A common usage for this is &Pl providing serialized endpoints (and redag serialized requests)
and providing rendered pages.

MyApp.pm
package MyApp;
use Dancer2;

another useful feature:
set auto_page => 1,

get /' => sub { template 'index' =>{...} };

MyApp/APl.pm

package MyApp::API;

use Dancer2;

set serializer => 'JSON'; # or any other serializer

get /' => sub { +{ resources => \%resources, ... } };

user—specific routes, for example
prefix => '/users' => sub {

get 'lview' =>sub{.};
get 'view/:id' => sub {...};
put ‘/add' =>sub {...}; # automatically deserialized params

Then those will be mounted together for a single app:
handler: app.pl:
use MyApp;
use MyApp::API;
use Plack::Builder;

builder {
mount /' => MyApp—>to_app;
mount ‘/api' => MyApp::API->to_app;
2
An example: Writing\PI interfaces
This example demonstrates an app that makes a request to a waritterd then displays it
dynamically in a web page.

Other than Dancer2 for defining routes, we will use HTTiRy.To make the weatherAPI request,
JSONto decode it fromiSONformat, and finally File::Spec to prale a fully-qualified path to our

perl v5.20.2 2015-06-18 12

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

Ubuntu 15.10 (Wily Werewolf) man.m.sourcentral.org

Dancer2::Cookbook(3pm) Us@ontributed Perl Documentation Dancer2::Cookbook(3pm)

template engine.

use JSON;

use Dancerz;
use HTTP::Tiny;
use File::Spec;

Configuration

We wse the €mplate::Dolkit template system for this apfancer searches for our templates in our
views directory which defults toviewsdirectory in our current directar@ince we want to put our
template in our current directgrye will configure that. Havever, Template::Toolkitdoes not want us
to provide a relatie path without configuring it to alle it. This is a security issue. So, we're using
File::Spec to create a full path to where we are.

We dso unset the default layout, so Dancemw try to wrap our template with another one. This is a
feature in Dancer to allo you to wrap your templates with a layout when your templating system
doesnt support it. Since we're not using a layout here, we taeed it.

set template => 'template_toolkit'; # settemplate engine
setlayout => undef; # disable layout
set views => File::Spec—>rel2abs('."); # full path to views

Now, we define ouruRrL:
my $url = 'http://api.openweathermap.org/data/2.5/weather?id=5110629&units=imperial’;
Route

We will define a main route which, upon a request, will fetch the information from the wesdther
decode it, and then display it to the user.

Route definition:
get'/"=>sub{

%
Editing the stub of route dispatching code, we start by making the request and decoding it:

f etch data
my $res = HTTP::Tiny—>new—->get($url);

decode request
my $data = decode_json $res—>{'content’},

The data is not just a flat hashs & ceep structure. In this example, we will filter it for only the simple
keys in the retrieed data:
my $metrics = { map +(
ref $data—>{$_}? () : ($_=> $data—>{$_})
), keys %{$data} };
All that is left nav is to render it:
template index => { metrics => $metrics };

NON-STANDARD STEPS
Turning off warnings
Thewarnings pragma is already used when one loads Danceneldq if you really do not vant
thewarnings pragma (for example, due to an undesiredning about use of undef values), add a
no warnings pragma to the appropriate block in your module or psgi file.

AUTHOR
Dancer Core Delopers

COPYRIGHT AND LICENSE
This software is copyright (c) 2015 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-06-18 13

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Cookbook

