
Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

NAME
Dancer2::Tutorial − An example to get you dancing

VERSION
version 0.160003

What is Dancer2?
Dancer2 is a ‘‘micro’’ web framework which is modeled after a Ruby framework called Sinatra
<http://www.sinatrarb.com> that constructs web applications by building a list ofHTTP verbs, URLs
(called routes) and methods to handle that type of traffic to that specificURL.

use Dancer2;

get '/' => sub {
return 'Hello World!';

};

start;

This example shows a singleHTTP verb ‘‘GET’’ followed by the rootURL ‘‘/’’ and an anonymous
subroutine which returns the string"Hello World!" If you were to run this example, it would
display ‘‘Hello World!’’ when you point your browser at <http://localhost:3000>.

How about a little more inv olved example?
That’s the reason I wrote this tutorial. While I was investigating some Python web frameworks like
Flask <http://flask.pocoo.org/> or Bottle <http://bottle.paws.de/docs/dev/index.html> I enjoyed the way
they explained step by step how to build an example application which was a little more involved than a
trivial example.

Using the Flaskr <http://github.com/mitsuhiko/flask/tree/master/examples/flaskr/> sample application
as my inspiration (OK, shamelessly plagiarised) I translated that application to the Dancer2 framework
so I could better understand how Dancer2 worked. (I’m learning it too!)

So ‘‘Dancr’’ was born.

Dancr is a simple ‘‘micro’’ blog which uses the SQLite <http://www.sqlite.org> database engine for
simplicity’s sake. (You’ll need to install sqlite if you don’t hav eit installed already.)

Required perl modules
Obviously you need Dancer2.You also need the Template Toolkit, File::Slurp, and DBD::SQLite.
These all can be installed using yourCPAN client, as in:

cpan Dancer2 Template File::Slurp DBD::SQLite

The database
We’re not going to spend a lot of time on the database, as it’s not really the point of this particular
tutorial. Openyour favorite text editor <http://www.vim.org> and create a schema definition called
’schema.sql’ with the following content:

create table if not exists entries (
id integer primary key autoincrement,
title string not null,
text string not null

);

Here we have a single table with three columns: id, title, and text. The’id’ field is the primary key and
will automatically get anID assigned by the database engine when a row is inserted.

We want our application to initialize the database automatically for us when we start it, so next, create a
file called ’dancr.pl’. (The entire file is listed below, so don’t worry about copying each of these
fragments into ’dancr.pl’ as you read through this document.) We’re going to put the following
subroutines in that file:

sub connect_db {
my $dbh = DBI−>connect("dbi:SQLite:dbname=".setting('database')) or

die $DBI::errstr;

return $dbh;

perl v5.20.2 2015-06-18 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

}

sub init_db {
my $db = connect_db();
my $schema = read_file('./schema.sql');
$db−>do($schema) or die $db−>errstr;

}

Nothing too fancy in here, I hope. StandardDBI except for thesetting('database') thing −
more on that in a bit.For now, just assume that the expression evaluates to the location of the database
file.

(Note that you may want to look at the Dancer2::Plugin::Database module for an easy way to configure
and manage database connections for your Dancer2 apps, but the above will suffice for this tutorial.)

Our first route handler
Let’s tackle our first route handler now, the one for the rootURL ’/’. This is what it looks like:

get '/' => sub {
my $db = connect_db();
my $sql = 'select id, title, text from entries order by id desc';
my $sth = $db−>prepare($sql) or die $db−>errstr;
$sth−>execute or die $sth−>errstr;
template 'show_entries.tt', {

'msg' => get_flash(),
'add_entry_url' => uri_for('/add'),
'entries' => $sth−>fetchall_hashref('id'),

};
};

As you can see, the handler is created by specifying theHTTP verb ’get’, the ’/’ URL to match, and
finally, a subroutine to do something once those conditions have been satisfied. Something you might
not notice right away is the semicolon at the end of the route handler. Since the subroutine is actually a
coderef, it requires a semicolon.

Let’s take a closer look at the subroutine. The first few lines are standardDBI. The only new concept as
part of Dancer2 is thattemplate directive at the end of the handler. That tells Dancer2 to process the
output through one of its templating engines.In this case, we’re using Template Toolkit which offers a
lot more flexibility than the simple default Dancer2 template engine.

Templates all go into theviews/ directory. Optionally, you can create a ‘‘layout’’ template which
provides a consistent look and feel for all of your views. We’ll construct our own layout template
cleverly namedmain.tt a little later in this tutorial.

What’s going on with the hashref as the second argument to the template directive? Those are all of the
parameters we want to pass into our template.We hav ea msg field which displays a message to the
user when an event happens like a new entry is posted, or the user logs in or out.It’s called a ‘‘flash’’
message because we only want to display it one time, not every time the /URL is rendered.

The uri_for directive tells Dancer2 to provide aURI for that specific route, in this case, it is the
route to post a new entry into the database.You might ask why we don’t simply hardcode the/add
URI in our application or templates. The best reasonnot to do that is because it removes a layer of
flexibility as to where to ‘‘mount’’ the web application. Although the application is coded to use the
root URL / it might be better in the future to locate it under its own URL route (maybe/dancr ?) −at
that point we’d hav eto go through our application and the templates and update the URLs and hope we
didn’t miss any of them. Byusing theuri_for Dancer2 method, we can easily load the application
wherever we like and not have to modify the application at all.

Finally, theentries field contains a hashref with the results from our database query. Those results
will be rendered in the template itself, so we just pass them in.

So what does theshow_entries.tt template look like? This:

perl v5.20.2 2015-06-18 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

[% IF session.logged_in %]
<form action="[% add_entry_url %]" method=post class=add−entry>

<dl>
<dt>Title:
<dd><input type=text size=30 name=title>
<dt>Text:
<dd><textarea name=text rows=5 cols=40></textarea>
<dd><input type=submit value=Share>

</dl>
</form>

[% END %]
<ul class=entries>
[% IF entries.size %]

[% FOREACH id IN entries.keys.nsort %]
<h2>[% entries.$id.title %]</h2>[% entries.$id.text %]

[% END %]
[% ELSE %]

Unbelievable. No entries here so far
[% END %]

Again, since this isn’t a tutorial specifically about Template Toolkit, I’m going to gloss over the syntax
here and just point out the section which starts with<ul class=entries> − this is the section
where the database query results are displayed.You can also see at the very top some discussion about
a session − more on that soon.

Other HTTP verbs
There are 8 defined HTTP verbs defined in RFC 2616
<http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9>:OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, CONNECT. Of these, the majority of web applications focus on the verbs which
closely map to theCRUD (Create, Retrieve, Update, Delete) operations most database-driven
applications need to implement.

In addition, thePATCH verb was defined inRFC5789 <http://tools.ietf.org/html/rfc5789>, and is
intended as a ‘‘partial PUT’’ − sending just the changes required to the entity in question.How this
would be handled is down to your app, it will vary depending on the type of entity in question and the
serialization in use.

Dancer2 currently supportsGET, PUT/PATCH, POST, DELETE, OPTIONS which map to Retrieve,
Update, Create, Delete respectively. Let’s take a look now at the /add route handler which handles a
POSToperation.

post '/add' => sub {
if (not session('logged_in')) {

send_error("Not logged in", 401);
}

my $db = connect_db();
my $sql = 'insert into entries (title, text) values (?, ?)';
my $sth = $db−>prepare($sql) or die $db−>errstr;
$sth−>execute(params−>{'title'}, params−>{'text'}) or die $sth−>errstr;

set_flash('New entry posted!');
redirect '/';

};

As before, theHTTP verb begins the handler, followed by the route, and a subroutine to do something −
in this case, it will insert a new entry into the database.

The first check in the subroutine is to make sure the user sending the data is logged in. If not, the
application returns an error and stops processing. Otherwise, we have standardDBI stuff. Let me insert
(heh, heh) a blatant plug here for always, always using parameterized INSERTs in your application
SQL statements. It’s the only way to be sure your application won’t be vulnerable toSQL injection.

perl v5.20.2 2015-06-18 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

(See <http://www.bobby−tables.com> for correctINSERT examples in multiple languages.) Here we’re
using theparams convenience method to pull in the parameters in the currentHTTP request. (You can
see the ’title’ and ’text’ form parameters in theshow_entries.tt template above.) Those values are
inserted into the database, then we set a flash message for the user and redirect her back to the root
URL.

It’s worth mentioning that the ‘‘flash message’’ is not part of Dancer2, but a part of this specific
application.

Logins and sessions
Dancer2 comes with a simple in-memory session manager out of the box. It supports a bunch of other
session engines includingYAML, memcached, browser cookies and others.For this application we’re
going to stick with the in-memory model which works great for development and tutorials, but won’t
persist across server restarts or scale very well in ‘‘real world’’ production scenarios.

Configuration options
To use sessions in our application, we have to tell Dancer2 to activate the session handler and initialize
a session manager. To do that, we add some configuration directives tow ard the top of our ’dancr.pl’
file. But there are more options than just the session engine we want to set.

set 'database' => File::Spec−>catfile(File::Spec−>tmpdir(), 'dancr.db');
set 'session' => 'Simple';
set 'template' => 'template_toolkit';
set 'logger' => 'console';
set 'log' => 'debug';
set 'show_errors' => 1;
set 'startup_info' => 1;
set 'warnings' => 1;

Hopefully these are fairly self-explanatory. We want the Simple session engine, the Template Toolkit
template engine, logging enabled (at the ’debug’ level with output to the console instead of a file), we
want to show errors to the web browser, log access attempts and log Dancer2 warnings (instead of
silently ignoring them).

In a more sophisticated application you would want to put these configuration options into a
configuration file, but for this tutorial, we’re going to keep it simple. Dancer2 also supports the notion
of application environments, meaning you can create a configuration file for your development
instance, and another config file for the production environment (with things like debugging and
showing errors disabled perhaps). Dancer2 also doesn’t impose any limits on what parameters you can
set using theset syntax. For this application we’re going to embed our single username and password
into the application itself:

set 'username' => 'admin';
set 'password' => 'password';

Hopefully no one will ever guess our clever password! Obviously, you will want a more sophisticated
user authentication scheme in any sort of non-tutorial application but this is good enough for our
purposes.

Logging in
Now that Dancr is configured to handle sessions, let’s take a look at theURL handler for the/login
route.

any ['get', 'post'] => '/login' => sub {
my $err;

if (request−>method() eq "POST") {
process form input
if (params−>{'username'} ne setting('username')) {

$err = "Invalid username";
}
elsif (params−>{'password'} ne setting('password')) {

$err = "Invalid password";
}
else {

perl v5.20.2 2015-06-18 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

session 'logged_in' => true;
set_flash('You are logged in.');
return redirect '/';

}
}

display login form
template 'login.tt', {

'err' => $err,
};

};

This is the first handler which accepts two different verb types, aGET for a human browsing to theURL
and aPOSTfor the browser to submit the user’s input to the web application.Since we’re handling two
different verbs, we check to see what verb is in the request. If it’s not a POST,we drop down to the
template directive and display thelogin.tt template:

<h2>Login</h2>
[% IF err %]<p class=error>Error: [% err %][% END %]
<form action="[% login_url %]" method=post>

<dl>
<dt>Username:
<dd><input type=text name=username>
<dt>Password:
<dd><input type=password name=password>
<dd><input type=submit value=Login>

</dl>
</form>

This is even simpler than ourshow_entries.tt template − but wait − there’s a login_url template
parameter and we’re only passing in theerr parameter. Where’s the missing parameter?It’s being
generated and sent to the template in abefore_template directive − we’ll come back to that in a
moment or two.

So the user fills out thelogin.tt template and submits it back to the/login route handler. We now
check the user input against our application settings and if the input is incorrect, we alert the user,
otherwise the application starts a session and sets thelogged_in session parameter to thetrue()
value. Dancer2 exports both atrue() andfalse() convenience method which we use here.After
that, it’s another flash message and back to the rootURL handler.

Logging out
And finally, we need a way to clear our user’s session with the customary logout procedure.

get '/logout' => sub {
app−>destroy_session;
set_flash('You are logged out.');
redirect '/';

};

app−>destroy_session; is Dancer2’s way to remove a stored session.We notify the user she is
logged out and route her back to the rootURL once again.

Layout and static files
We still have a missing puzzle piece or two. First, how can we use Dancer2 to serve our CSS
stylesheet? Second, where are flash messages displayed? Third, what about thebefore_template
directive?

Serving static files
In Dancer2, static files should go into thepublic/ directory, but in the application itself be sure to
omit the public/ element from the path.For example, the stylesheet for Dancr lives in
dancr/public/css/style.css but is served from <http://localhost:3000/css/style.css>.

If you wanted to build a mostly static web site you could simply write route handlers like this one:

perl v5.20.2 2015-06-18 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

get '/' => sub {
send_file 'index.html';

};

where index.html would live in yourpublic/ directory.

send_file does exactly what it says: it loads a static file, then sends the contents of that file to the
user.

Layouts
I mentioned near the beginning of this tutorial that it is possible to create alayout template. In
Dancr, that layout is calledmain and it’s set up by putting in a directive like this:

set layout => 'main';

near the top of your web application.This tells Dancer2’s template engine that it should look for a file
calledmain.tt in dancr/views/layouts/ and insert the calls from thetemplate directive into a
template parameter calledcontent .

For this web application, the layout template looks like this:

<!doctype html>
<html>
<head>

<title>Dancr</title>
<link rel=stylesheet type=text/css href="[% css_url %]">

</head>
<body>

<div class=page>
<h1>Dancr</h1>

<div class=metanav>
[% IF not session.logged_in %]

log in
[% ELSE %]

log out
[% END %]

</div>
[% IF msg %]

<div class=flash> [% msg %] </div>
[% END %]
[% content %]

</div>
</body>
</html>

Aha! You now see where the flash messagemsg parameter gets rendered. You can also see where the
content from the specific route handlers is inserted (the fourth line from the bottom in thecontent
template parameter).

But what about all those other*_url template parameters?

Usingbefore_template
Dancer2 has a way to manipulate the template parameters before they’re passed to the engine for
processing. It’s before_template . Using this directive, you can generate and set the URIs for the
/login and/logout route handlers and theURI for the stylesheet. This is handy for situations like
this where there are values which are re-used consistently across all (or most) templates. This cuts
down on code-duplication and makes your app easier to maintain over time since you only need to
update the values in this one place instead of everywhere you render a template.

hook before_template => sub {
my $tokens = shift;

$tokens−>{'css_url'} = request−>base . 'css/style.css';
$tokens−>{'login_url'} = uri_for('/login');
$tokens−>{'logout_url'} = uri_for('/logout');

perl v5.20.2 2015-06-18 6

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

};

Here again I’m usinguri_for instead of hardcoding the routes. This code block is executed before
any of the templates are processed so that the template parameters have the appropriate values before
being rendered.

Putting it all together
Here’s the complete ’dancr.pl’ script from start to finish.

use Dancer2;
use DBI;
use File::Spec;
use File::Slurp;
use Template;

set 'database' => File::Spec−>catfile(File::Spec−>tmpdir(), 'dancr.db');
set 'session' => 'Simple';
set 'template' => 'template_toolkit';
set 'logger' => 'console';
set 'log' => 'debug';
set 'show_errors' => 1;
set 'startup_info' => 1;
set 'warnings' => 1;
set 'username' => 'admin';
set 'password' => 'password';
set 'layout' => 'main';

my $flash;

sub set_flash {
my $message = shift;

$flash = $message;
}

sub get_flash {

my $msg = $flash;
$flash = "";

return $msg;
}

sub connect_db {
my $dbh = DBI−>connect("dbi:SQLite:dbname=".setting('database')) or

die $DBI::errstr;

return $dbh;
}

sub init_db {
my $db = connect_db();
my $schema = read_file('./schema.sql');
$db−>do($schema) or die $db−>errstr;

}

hook before_template => sub {
my $tokens = shift;

$tokens−>{'css_url'} = request−>base . 'css/style.css';

perl v5.20.2 2015-06-18 7

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

$tokens−>{'login_url'} = uri_for('/login');
$tokens−>{'logout_url'} = uri_for('/logout');

};

get '/' => sub {
my $db = connect_db();
my $sql = 'select id, title, text from entries order by id desc';
my $sth = $db−>prepare($sql) or die $db−>errstr;
$sth−>execute or die $sth−>errstr;
template 'show_entries.tt', {

'msg' => get_flash(),
'add_entry_url' => uri_for('/add'),
'entries' => $sth−>fetchall_hashref('id'),

};
};

post '/add' => sub {
if (not session('logged_in')) {

send_error("Not logged in", 401);
}

my $db = connect_db();
my $sql = 'insert into entries (title, text) values (?, ?)';
my $sth = $db−>prepare($sql) or die $db−>errstr;
$sth−>execute(params−>{'title'}, params−>{'text'}) or die $sth−>errstr;

set_flash('New entry posted!');
redirect '/';

};

any ['get', 'post'] => '/login' => sub {
my $err;

if (request−>method() eq "POST") {
process form input
if (params−>{'username'} ne setting('username')) {

$err = "Invalid username";
}
elsif (params−>{'password'} ne setting('password')) {

$err = "Invalid password";
}
else {

session 'logged_in' => true;
set_flash('You are logged in.');
return redirect '/';

}
}

display login form
template 'login.tt', {

'err' => $err,
};

};

get '/logout' => sub {
app−>destroy_session;
set_flash('You are logged out.');
redirect '/';

perl v5.20.2 2015-06-18 8

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

Dancer2::Tutorial(3pm) UserContributed Perl Documentation Dancer2::Tutorial(3pm)

};

init_db();
start;

Advanced route moves
There’s a lot more to route matching than shown here. For example, you can match routes with regular
expressions, or you can match pieces of a route like /hello/:name where the:name piece
magically turns into a named parameter in your handler for manipulation.

Happy dancing!
I hope this effort has been helpful and interesting enough to get you exploring Dancer2 on your own.
The framework is still under heavy development but it’s definitely mature enough to use in a production
project. Additionally, there are now a lot of great Dancer2 plugins which extend and enhance the
capabilities of the platform.

Happy dancing!

SEE ALSO
• <http://perldancer.org>

• <http://github.com/PerlDancer/Dancer2>

• Dancer2::Plugins

COPYRIGHT AND LICENSE
Copyright (C) 2010 by Mark R. Allen.

This is free software; you can redistribute it and/or modify it under the terms of either the Artistic
License 2.0 or theGNU Public License version 2.

The CSS stylesheet is copied verbatim from the Flaskr example application and is subject to their
license:

Copyright (c) 2010, 2013 by Armin Ronacher and contributors.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well as documentation, with or
without modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• The names of the contributors may not be used to endorse or promote products derived from this
software without specific prior written permission.

AUTHOR
Dancer Core Developers

COPYRIGHT AND LICENSE
This software is copyright (c) 2015 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-06-18 9

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer2::Tutorial

