
Dancer::Exception(3pm) UserContributed Perl Documentation Dancer::Exception(3pm)

NAME
Dancer::Exception − class for throwing and catching exceptions

VERSION
version 1.3140

SYNOPSIS
use Dancer::Exception qw(:all);

register_exception('DataProblem',
message_pattern => "test message : %s"

);

sub do_stuff {
raise DataProblem => "we've lost data!";

}

try {
do_stuff()

} c atch {
an e xception was thrown
my ($exception) = @_;
if ($exception−>does('DataProblem')) {

handle the data problem
my $message = $exception−>message();

} e lse {
$exception−>rethrow

}
};

DESCRIPTION
Dancer::Exception is based on Try::Tiny. You can try and catch exceptions, like in Try::Tiny.

Exceptions are objects, from subclasses of Dancer::Exception::Base.

However, for internal Dancer usage, we introduce a special class of exceptions, called
Dancer::Continuation. Exceptions that are from this class are not caught with acatch block, but only
with a continuation . That’s a cheap way to implement aworkflow interruption. Dancer users
should ignore this feature.

What it means for Dancer users
Users can throw and catch exceptions, usingtry and catch . They can reuse some Dancer core
exceptions (Dancer::Exception::Base::*), but they can also create new exception classes,
and use them for their own means. That way it’s easy to use custom exceptions in a Dancer application.
Have a look atregister_exception , raise , and the methods in Dancer::Exception::Base.

METHODS
try

Same as in Try::Tiny

catch
Same as in Try::Tiny. The exception can be retrieved as the first parameter:

try { ... } catch { my ($exception) = @_; };

continuation
To be used by Dancer developers only, in Dancer core code.

raise
r aise Dancer::Exception::Base::Custom
raise Custom => "user $username is unknown";

r aise Dancer::Exception::Base::Custom::Frontend
raise 'Custom::Frontend' => "user $username is unknown";

perl v5.20.2 2015-07-03 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Exception

Dancer::Exception(3pm) UserContributed Perl Documentation Dancer::Exception(3pm)

s ame, raise Dancer::Exception::Base::Custom::Frontend
raise custom_frontend => "user $username is unknown";

r aise My::Own::ExceptionSystem::Invalid::Login
raise '+My::Own::ExceptionSystem::Invalid::Login' => "user $username is unknown";

raise provides an easy way to throw an exception. First parameter is the name of the exception class,
without theDancer::Exception:: prefix. other parameters are stored asraising argumentsin the
exception. Usually the parameters is an exception message, but it’s left to the exception class
implementation.

If the exception class name starts with a+, then theDancer::Exception:: won’t be added. This
allows one to build their own exception class hierarchy, but you should first look at
register_exception before implementing your own class hierarchy. If you really wish to build
your own exception class hierarchy, we recommend that all exceptions inherit of Dancer::Exception::.
Or at least it should implement its methods.

The exception class can also be written as words separated by underscores, it’ll be camelized
automatically. So 'Exception::Foo' and 'exception_foo' are equivalent. Be careful,
'MyException' can’t be written 'myexception' , as it would be camelized into
'Myexception' .

register_exception
This method allows one to register custom exceptions, usable by Dancer users in their route code
(actually pretty much everywhere).

s imple exception
register_exception ('InvalidCredentials',

message_pattern => "invalid credentials : %s",
);

This registers a new custom exception. To use it, do:

raise InvalidCredentials => "user Herbert not found";

The exception message can be retrieved with the $exception−>message method, and we’ll be
"invalid credentials : user Herbert not found" (see methods in
Dancer::Exception::Base)

c omplex exception
register_exception ('InvalidLogin',

composed_from => [qw(Fatal InvalidCredentials)],
message_pattern => "wrong login or password",

);

In this example, the InvalidLogin is built as a composition of theFatal and
InvalidCredentials exceptions. See thedoes method in Dancer::Exception::Base.

registered_exceptions
my @exception_classes = registered_exceptions;

Returns the list of exception class names. It will list core exceptionsand custom exceptions (except the
one you’ve registered with a leading+, seeregister_exception). The list is sorted.

GLOBAL VARIABLE
$Dancer::Exception::Verbose

When set to 1, exceptions will stringify with a long stack trace. This variable is similar to
$Carp::Verbose . I recommend you use it like that:

local $Dancer::Exception::Verbose;
$Dancer::Exception::Verbose = 1;

All the Carp global variables can also be used to alter the stacktrace generation.

AUTHOR
Dancer Core Developers

perl v5.20.2 2015-07-03 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Exception

Dancer::Exception(3pm) UserContributed Perl Documentation Dancer::Exception(3pm)

COPYRIGHT AND LICENSE
This software is copyright (c) 2010 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-07-03 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Exception

