
Dancer::Request(3pm) UserContributed Perl Documentation Dancer::Request(3pm)

NAME
Dancer::Request − interface for accessing incoming requests

VERSION
version 1.3140

DESCRIPTION
This class implements a common interface for accessing incoming requests in a Dancer application.

In a route handler, the current request object can be accessed by therequest method, like in the
following example:

get '/foo' => sub {
request−>params; # request, params parsed as a hash ref
request−>body; # returns the request body, unparsed
request−>path; # the path requested by the client
. ..

};

A route handler should not read the environment by itself, but should instead use the current request
object.

PUBLIC INTERFACE
new()

The constructor of the class, used internally by Dancer’s core to create request objects.

It uses the environment hash table given to build the request object:

Dancer::Request−>new(env => \%ENV);

It also accepts theis_forward boolean flag, if the new request object is the result of a forward.

init()
Used internally to define some default values and parse parameters.

new_for_request($method, $path , $params , $body , $headers)
An alternate constructor convenient for test scripts which creates a request object with the arguments
given.

forward($request, $new_location)
Create a new request which is a clone of the current one, apart from the path location, which points
instead to the new location. Thisis used internally to chain requests using the forward keyword.

Note that the new location should be a hash reference. Only one key is required, theto_url , that
should point to theURL that forward will use. Optional values are the key params to a hash of
parameters to be added to the current request parameters, and the key options that points to a hash of
options about the redirect (for instance,method pointing to a new request method).

is_forward
Flag that will be set to true if the request has been forwarded.

to_string()
Return a string representing the request object (eg:"GET /some/path")

method()
Return theHTTP method used by the client to access the application.

While this method returns the method string as provided by the environment, it’s better to use one of
the following boolean accessors if you want to inspect the requested method.

address()
Return theIP address of the client.

remote_host()
Return the remote host of the client. This only works with web servers configured to do a reverseDNS
lookup on the client’sIP address.

protocol()
Return the protocol (HTTP/1.0or HTTP/1.1) used for the request.

perl v5.20.2 2015-07-03 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Request

Dancer::Request(3pm) UserContributed Perl Documentation Dancer::Request(3pm)

port()
Return the port of the server.

uri()
An alias torequest_uri()

request_uri()
Return the raw, undecoded requestURI path.

user()
Return remote user if defined.

script_name()
Return script_name from the environment.

scheme()
Return the scheme of the request

secure()
Return true of false, indicating whether the connection is secure

is_get()
Return true if the method requested by the client is ’GET’

is_head()
Return true if the method requested by the client is ’HEAD’

is_patch()
Return true if the method requested by the client is ’PATCH’

is_post()
Return true if the method requested by the client is ’POST’

is_put()
Return true if the method requested by the client is ’PUT’

is_delete()
Return true if the method requested by the client is ’DELETE’

path()
Return the path requested by the client.

base()
Returns an absoluteURI for the base of the application. Returns aURI object (which stringifies to the
URL, as you’d expect).

uri_base()
Same thing asbase above, except it removes the last trailing slash in the path if it is the only path.

This means that if your base ishttp://myserver/, uri_base will return http://myserver (notice no
trailing slash). This is considered very useful when using templates to do the following thing:

<link rel="stylesheet" href="<% request.uri_base %>/css/style.css" />

uri_for(path, params)
Constructs aURI from the base and the passed path. If params (hashref) is supplied, these are added to
the query string of the uri. If the base is http://localhost:5000/foo ,
request−>uri_for('/bar', { baz => 'baz' }) would return
http://localhost:5000/foo/bar?baz=baz . Returns aURI object (which stringifies to the
URL, as you’d expect).

params($source)
Called in scalar context, returns a hashref of params, either from the specified source (see below for
more info on that) or merging all sources.

So, you can use, for instance:

my $foo = params−>{foo}

If called in list context, returns a list of key => value pairs, so you could use:

perl v5.20.2 2015-07-03 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Request

Dancer::Request(3pm) UserContributed Perl Documentation Dancer::Request(3pm)

my %allparams = params;

If the incoming form data contains multiple values for the same key, they will be returned as an
arrayref.

Fetching only params from a given source

If a required source isn’t specified, a mixed hashref (or list of key value pairs, in list context) will be
returned; this will contain params from all sources (route, query, body).

In practical terms, this means that if the paramfoo is passed both on the querystring and in aPOST
body, you can only access one of them.

If you want to see only params from a given source, you can say so by passing the$source param to
params() :

my %querystring_params = params('query');
my %route_params = params('route');
my %post_params = params('body');

If source equalsroute , then only params parsed from the route pattern are returned.

If source equalsquery , then only params parsed from the query string are returned.

If source equalsbody , then only params sent in the request body will be returned.

If another value is given for $source , then an exception is triggered.

Vars
Alias to theparams accessor, for backward-compatibility withCGI interface.

request_method
Alias to themethod accessor, for backward-compatibility withCGI interface.

input_handle
Alias to thePSGIinput handle (<request−>env−>{psgi.input}>)

content_type()
Return the content type of the request.

content_length()
Return the content length of the request.

header($name)
Return the value of the given header, if present. If the header has multiple values, returns an the list of
values if called in list context, the first one in scalar.

headers()
Returns the HTTP::Header object used to store all the headers.

body()
Return the raw body of the request, unparsed.

If you need to access the body of the request, you have to use this accessor and should not try to read
psgi.input by hand.Dancer::Request already did it for you and kept the raw body untouched
in there.

is_ajax()
Return true if the value of the headerX−Requested−With is XMLHttpRequest.

env()
Return the current environment as a hashref.

Note that a request’s environment is not always reflected by the global variable %ENV(e.g., when
running via Plack::Handler::FCGI). In consequence, it is recommended to always rely on the values
returned byenv() , and not to access%ENVdirectly.

uploads()
Returns a reference to a hash containing uploads. Values can be either a Dancer::Request::Upload
object, or an arrayref of Dancer::Request::Upload objects.

You should probably use theupload($name) accessor instead of manually accessing theuploads
hash table.

perl v5.20.2 2015-07-03 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Request

Dancer::Request(3pm) UserContributed Perl Documentation Dancer::Request(3pm)

upload($name)
Context-aware accessor for uploads. It’s a wrapper around an access to the hash table provided by
uploads() . It looks at the calling context and returns a corresponding value.

If you have many file uploads under the same name, and callupload('name') in an array context,
the accessor will unroll theARRAY ref for you:

my @uploads = request−>upload('many_uploads'); # OK

Whereas with a manual access to the hash table, you’ll end up with one element in@uploads , being
theARRAY ref:

my @uploads = request−>uploads−>{'many_uploads'}; # $uploads[0]: ARRAY(0xXXXXX)

That is why this accessor should be used instead of a manual access touploads .

Values
Given a request to http://perldancer.org:5000/request−methods?a=1 these are the values returned by the
various request−> method calls:

base http://perldancer.org:5000/
host perldancer.org
uri_base http://perldancer.org:5000
uri /request−methods?a=1
request_uri /request−methods?a=1
path /request−methods
path_info /request−methods
method GET
port 5000
protocol HTTP/1.1
scheme http

HTTP environment variables
All HTTP environment variables that are in%ENVwill be provided in the Dancer::Request object
through specific accessors, here are those supported:

accept
accept_charset
accept_encoding
accept_language
accept_type
agent (alias foruser_agent)
connection
forwarded_for_address
forwarded_protocol
forwarded_host
host
keep_alive
path_info
referer
remote_address
request_base
user_agent

AUTHORS
This module has been written by Alexis Sukrieh and was mostly inspired by Plack::Request, written by
Tatsuiko Miyagaw a.

Tatsuiko Miyagaw aalso gav ea hand for thePSGIinterface.

LICENCE
This module is released under the same terms as Perl itself.

SEE ALSO
Dancer

perl v5.20.2 2015-07-03 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Request

Dancer::Request(3pm) UserContributed Perl Documentation Dancer::Request(3pm)

AUTHOR
Dancer Core Developers

COPYRIGHT AND LICENSE
This software is copyright (c) 2010 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-07-03 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Request

