
Dancer::Template::Abstract(3pm) UserContributed Perl Documentation Dancer::Template::Abstract(3pm)

NAME
Dancer::Template::Abstract − abstract class for Dancer’s template engines

VERSION
version 1.3140

DESCRIPTION
This class is provided as a base class for each template engine. Any template engine must inherit from
it and provide a set of methods described below.

TEMPLATE TOKENS
By default Dancer injects some tokens (or variables) to templates. The available tokens are:

perl_version
The current running Perl version.

dancer_version
The current running Dancer version.

settings
Hash to access current application settings.

request
Hash to access your current request.

params
Hash to access your request parameters.

vars
Hash to access your defined variables (usingvars).

session
Hash to access your session (if you have session enabled)

INTERFACE
init()

The template engine can overload this method if some initialization stuff has to be done before the
template engine is used.

The base class provides a plaininit() method that only returns true.

default_tmpl_ext()
Template class that inherits this class should override this method to return a default template
extension, example: for Template::Toolkit it returns ‘‘tt’ ’ and for HTML::Mason it returns
‘‘ mason’’. So when you calltemplate 'index'; in your dispatch code, Dancer will look for
a file ’index.tt’ or ’index.mason’ based on the template you use.

Note 1: when returning the extension string, please do not add a dot in front of the extension as
Dancer will do that.

Note 2: for backwards compatibility abstract class returns ‘‘tt’ ’ i nstead of throwing an exception
’method not implemented’.

User would be able to change the default extension using the<extension > configuration
variable on the template configuration. For example, for the default (Simple) engine:

template: "simple"
engines:

simple:
extension: 'tmpl'

view($view)
The default behavior of this method is to return the path of the given view, appending the default
template extension (either the value of theextension setting in the configuration, or the value
returned bydefault_tmpl_ext) if it i s not present in the view name given and no layout
template with that exact name existed. (Inother words, given a layout namemain , if main exists
in the layouts dir, it will be used; if not,main.tmpl (where tmpl is the value of the
extension setting, or the value returned bydefault_tmpl_ext) will be looked for.)

perl v5.20.2 2015-07-03 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Template::Abstract

Dancer::Template::Abstract(3pm) UserContributed Perl Documentation Dancer::Template::Abstract(3pm)

view_exists($view_path)
By default, Dancer::Template::Abstract checks to see if it can find the view file calling
view_exists($path_to_file) . If not, it will generate a nice error message for the user.

If you are using extending Dancer::Template::Abstract to use a template system with multiple
document roots (like Text::XSlate or Template), you can override this method to always return
true, and therefore skip this check.

layout($layout, $tokens, $content)
The default behavior of this method is to merge a content with a layout. The layout file is looked
for with similar logic as perview − an exact match first, then attempting to append the default
template extension, if the view name given did not already end with it.

render($self, $template, $tokens)
This method must be implemented by the template engine. Given a template and a set of tokens, it
returns a processed string.

If $template is a reference, it’s assumed to be a reference to a string that contains the template
itself. If it’s not a reference, it’s assumed to be the path to template file, as a string. The render
method will then have to open it and read its content (Dancer::FileUtils::read_file_content does
that job).

This method’s return value must be a string which is the result of the interpolation of$tokens in
$template .

If an error occurs, the method should trigger an exception withdie() .

Examples :

with a template as a file
$content = $engine−>render('/my/template.txt', { var => 42 };

with a template as a scalar
my $template = "here is <% var %>";
$content = $engine−>render(\$template, { var => 42 });

AUTHOR
This module has been written by Alexis Sukrieh, see Dancer for details.

AUTHOR
Dancer Core Developers

COPYRIGHT AND LICENSE
This software is copyright (c) 2010 by Alexis Sukrieh.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

perl v5.20.2 2015-07-03 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+Dancer::Template::Abstract

