
Stream Management(3) Doxygen StreamManagement(3)

NAME
Stream Management −

Functions
CUresult cuStreamAddCallback (CUstreamhStream,CUstreamCallbackcallback, void *userData,

unsigned int flags)
Add a callback to a compute stream.

CUresult cuStreamAttachMemAsync(CUstreamhStream,CUdeviceptr dptr, size_t length,
unsigned int flags)
Attach memory to a stream asynchronously.

CUresult cuStreamCreate(CUstream *phStream, unsigned int Flags)
Create a stream.

CUresult cuStreamCreateWithPriority (CUstream *phStream, unsigned int flags, int priority)
Create a stream with the given priority.

CUresult cuStreamDestroy(CUstreamhStream)
Destroys a stream.

CUresult cuStreamGetFlags(CUstreamhStream, unsigned int *flags)
Query the flags of a given stream.

CUresult cuStreamGetPriority (CUstreamhStream, int *priority)
Query the priority of a given stream.

CUresult cuStreamQuery(CUstreamhStream)
Determine status of a compute stream.

CUresult cuStreamSynchronize(CUstreamhStream)
Wait until a stream’s tasks are completed.

CUresult cuStreamWaitEvent (CUstreamhStream,CUevent hEvent, unsigned int Flags)
Make a compute stream wait on an event.

Detailed Description
\brief stream management functions of the low-level CUDA driver API (cuda.h)

This section describes the stream management functions of the low-level CUDA driver application
programming interface.

Function Documentation
CUresult cuStreamAddCallback (CUstream hStream, CUstreamCallback callback, void * userData,

unsigned int flags)
Adds a callback to be called on the host after all currently enqueued items in the stream have
completed. For each cuStreamAddCallback call, the callback will be executed exactly once. The
callback will block later work in the stream until it is finished.

The callback may be passedCUDA_SUCCESSor an error code. In the event of a device error, all
subsequently executed callbacks will receive an appropriateCUresult.

Callbacks must not make any CUDA API calls. Attempting to use a CUDA API will result in
CUDA_ERROR_NOT_PERMITTED . Callbacks must not perform any synchronization that may
depend on outstanding device work or other callbacks that are not mandated to run earlier. Callbacks
without a mandated order (in independent streams) execute in undefined order and may be serialized.

This API requires compute capability 1.1 or greater. SeecuDeviceGetAttribute or
cuDeviceGetPropertiesto query compute capability. Attempting to use this API with earlier compute
versions will returnCUDA_ERROR_NOT_SUPPORTED.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

• The callback stream is considered idle for the duration of the callback. Thus, for example, a callback
may always use memory attached to the callback stream.

• The start of execution of a callback has the same effect as synchronizing an event recorded in the
same stream immediately prior to the callback. It thus synchronizes streams which have been
’joined’ prior to the callback.

• Adding device work to any stream does not have the effect of making the stream active until all
preceding callbacks have executed. Thus, for example, a callback might use global attached memory
ev en if work has been added to another stream, if it has been properly ordered with an event.

Version 6.0 7 Aug 2014 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cuStreamDestroy


Stream Management(3) Doxygen StreamManagement(3)

• Completion of a callback does not cause a stream to become active except as described above. The
callback stream will remain idle if no device work follows the callback, and will remain idle across
consecutive callbacks without device work in between. Thus, for example, stream synchronization
can be done by signaling from a callback at the end of the stream.

Parameters:
hStream- Stream to add callback to
callback- The function to call once preceding stream operations are complete
userData- User specified data to be passed to the callback function
flags- Reserved for future use, must be 0

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_HANDLE , CUDA_ERROR_NOT_SUPPORTED

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuStreamQuery, cuStreamSynchronize, cuStreamWaitEvent,
cuStreamDestroy, cuMemAllocManaged, cuStreamAttachMemAsync

CUresult cuStreamAttachMemAsync (CUstream hStream, CUdeviceptr dptr, size_t length, unsigned
int flags)
Enqueues an operation inhStream to specify stream association oflength bytes of memory
starting fromdptr. This function is a stream-ordered operation, meaning that it is dependent on, and
will only take effect when, previous work in stream has completed. Any previous association is
automatically replaced.
dptr must point to an address within managed memory space declared using the __managed__
keyword or allocated withcuMemAllocManaged.
length must be zero, to indicate that the entire allocation’s stream association is being changed.
Currently, it’s not possible to change stream association for a portion of an allocation.
The stream association is specified usingflags which must be one ofCUmemAttach_flags. If the
CU_MEM_ATT ACH_GLOBAL flag is specified, the memory can be accessed by any stream on any
device. If theCU_MEM_ATT ACH_HOST flag is specified, the program makes a guarantee that it
won’t access the memory on the device from any stream. If theCU_MEM_ATT ACH_SINGLE flag is
specified, the program makes a guarantee that it will only access the memory on the device from
hStream. It is illegal to attach singly to the NULL stream, because the NULL stream is a virtual
global stream and not a specific stream. An error will be returned in this case.
When memory is associated with a single stream, the Unified Memory system will allow CPU access to
this memory region so long as all operations inhStream have completed, regardless of whether other
streams are active. In effect, this constrains exclusive ownership of the managed memory region by an
active GPU to per-stream activity instead of whole-GPU activity.
Accessing memory on the device from streams that are not associated with it will produce undefined
results. No error checking is performed by the Unified Memory system to ensure that kernels launched
into other streams do not access this region.
It is a program’s responsibility to order calls tocuStreamAttachMemAsyncvia events,
synchronization or other means to ensure legal access to memory at all times. Data visibility and
coherency will be changed appropriately for all kernels which follow a stream-association change.
If hStream is destroyed while data is associated with it, the association is removed and the
association reverts to the default visibility of the allocation as specified atcuMemAllocManaged. For
__managed__ variables, the default association is always CU_MEM_ATT ACH_GLOBAL . Note that
destroying a stream is an asynchronous operation, and as a result, the change to default association
won’t happen until all work in the stream has completed.
Parameters:

hStream- Stream in which to enqueue the attach operation
dptr - Pointer to memory (must be a pointer to managed memory)
length- Length of memory (must be zero)
flags- Must be one ofCUmemAttach_flags

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,

Version 6.0 7 Aug 2014 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cuStreamDestroy


Stream Management(3) Doxygen StreamManagement(3)

CUDA_ERROR_INVALID_HANDLE , CUDA_ERROR_NOT_SUPPORTED
Note:

This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuStreamQuery, cuStreamSynchronize, cuStreamWaitEvent,
cuStreamDestroy, cuMemAllocManaged

CUresult cuStreamCreate (CUstream * phStream, unsigned int Flags)
Creates a stream and returns a handle inphStream. TheFlags argument determines behaviors of
the stream. Valid values forFlags are:
• CU_STREAM_DEFAULT : Default stream creation flag.
• CU_STREAM_NON_BLOCKING : Specifies that work running in the created stream may run

concurrently with work in stream 0 (the NULL stream), and that the created stream should perform
no implicit synchronization with stream 0.

Parameters:
phStream- Returned newly created stream
Flags- Parameters for stream creation

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE , CUDA_ERROR_OUT_OF_MEMORY

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamDestroy, cuStreamCreateWithPriority , cuStreamGetPriority, cuStreamGetFlags,
cuStreamWaitEvent, cuStreamQuery, cuStreamSynchronize, cuStreamAddCallback

CUresult cuStreamCreateWithPriority (CUstream * phStream, unsigned int flags, int priority)
Creates a stream with the specified priority and returns a handle inphStream. This API alters the
scheduler priority of work in the stream. Work in a higher priority stream may preempt work already
executing in a low priority stream.
priority follows a convention where lower numbers represent higher priorities. ’0’ represents
default priority. The range of meaningful numerical priorities can be queried using
cuCtxGetStreamPriorityRange. If the specified priority is outside the numerical range returned by
cuCtxGetStreamPriorityRange, it will automatically be clamped to the lowest or the highest number
in the range.
Parameters:

phStream- Returned newly created stream
flags- Flags for stream creation. SeecuStreamCreatefor a list of valid flags
priority - Stream priority. Lower numbers represent higher priorities. See
cuCtxGetStreamPriorityRange for more information about meaningful stream priorities that can
be passed.

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE , CUDA_ERROR_OUT_OF_MEMORY

Note:
Note that this function may also return error codes from previous, asynchronous launches.
Stream priorities are supported only on Quadro and Tesla GPUs with compute capability 3.5 or
higher.
In the current implementation, only compute kernels launched in priority streams are affected by
the stream’s priority. Stream priorities have no effect on host-to-device and device-to-host memory
operations.

See also:
cuStreamDestroy, cuStreamCreate, cuStreamGetPriority, cuCtxGetStreamPriorityRange,
cuStreamGetFlags, cuStreamWaitEvent, cuStreamQuery, cuStreamSynchronize,
cuStreamAddCallback

CUresult cuStreamDestroy (CUstream hStream)
Destroys the stream specified byhStream.
In case the device is still doing work in the streamhStream whencuStreamDestroy()is called, the

Version 6.0 7 Aug 2014 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cuStreamDestroy


Stream Management(3) Doxygen StreamManagement(3)

function will return immediately and the resources associated withhStream will be released
automatically once the device has completed all work inhStream.
Parameters:

hStream- Stream to destroy
Returns:

CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuStreamWaitEvent, cuStreamQuery, cuStreamSynchronize,
cuStreamAddCallback

CUresult cuStreamGetFlags (CUstream hStream, unsigned int * flags)
Query the flags of a stream created usingcuStreamCreateor cuStreamCreateWithPriority and
return the flags inflags.
Parameters:

hStream- Handle to the stream to be queried
flags- Pointer to an unsigned integer in which the stream’s flags are returned The value returned in
flags is a logical ’OR’ of all flags that were used while creating this stream. See
cuStreamCreatefor the list of valid flags

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE , CUDA_ERROR_INVALID_HANDLE ,
CUDA_ERROR_OUT_OF_MEMORY

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamDestroy, cuStreamCreate, cuStreamGetPriority

CUresult cuStreamGetPriority (CUstream hStream, int * priority)
Query the priority of a stream created usingcuStreamCreateor cuStreamCreateWithPriority and
return the priority inpriority. Note that if the stream was created with a priority outside the
numerical range returned bycuCtxGetStreamPriorityRange, this function returns the clamped
priority. SeecuStreamCreateWithPriority for details about priority clamping.
Parameters:

hStream- Handle to the stream to be queried
priority - Pointer to a signed integer in which the stream’s priority is returned

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_VALUE , CUDA_ERROR_INVALID_HANDLE ,
CUDA_ERROR_OUT_OF_MEMORY

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamDestroy, cuStreamCreate, cuStreamCreateWithPriority ,
cuCtxGetStreamPriorityRange, cuStreamGetFlags

CUresult cuStreamQuery (CUstream hStream)
ReturnsCUDA_SUCCESSif all operations in the stream specified byhStream have completed, or
CUDA_ERROR_NOT_READY if not.
For the purposes of Unified Memory, a return value ofCUDA_SUCCESSis equivalent to having
calledcuStreamSynchronize().
Parameters:

hStream- Stream to query status of
Returns:

CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_HANDLE , CUDA_ERROR_NOT_READY

Version 6.0 7 Aug 2014 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cuStreamDestroy


Stream Management(3) Doxygen StreamManagement(3)

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuStreamWaitEvent, cuStreamDestroy, cuStreamSynchronize,
cuStreamAddCallback

CUresult cuStreamSynchronize (CUstream hStream)
Waits until the device has completed all operations in the stream specified byhStream. If the context
was created with theCU_CTX_SCHED_BLOCKING_SYNC flag, the CPU thread will block until
the stream is finished with all of its tasks.
Parameters:

hStream- Stream to wait for
Returns:

CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_HANDLE

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuStreamDestroy, cuStreamWaitEvent, cuStreamQuery,
cuStreamAddCallback

CUresult cuStreamWaitEvent (CUstream hStream, CUevent hEvent, unsigned int Flags)
Makes all future work submitted tohStream wait until hEvent reports completion before beginning
execution. This synchronization will be performed efficiently on the device. The event hEvent may be
from a different context thanhStream, in which case this function will perform cross-device
synchronization.
The streamhStream will wait only for the completion of the most recent host call to
cuEventRecord()onhEvent. Once this call has returned, any functions (includingcuEventRecord()
andcuEventDestroy()) may be called onhEvent again, and subsequent calls will not have any effect
onhStream.
If cuEventRecord()has not been called onhEvent, this call acts as if the record has already
completed, and so is a functional no-op.
Parameters:

hStream- Stream to wait
hEvent- Event to wait on (may not be NULL)
Flags- Parameters for the operation (must be 0)

Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED ,
CUDA_ERROR_NOT_INITIALIZED , CUDA_ERROR_INVALID_CONTEXT ,
CUDA_ERROR_INVALID_HANDLE ,

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cuStreamCreate, cuEventRecord, cuStreamQuery, cuStreamSynchronize,
cuStreamAddCallback, cuStreamDestroy

Author
Generated automatically by Doxygen from the source code.

Version 6.0 7 Aug 2014 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cuStreamDestroy

