
Stream Management(3) Doxygen StreamManagement(3)

NAME
Stream Management −

Typedefs
typedef void(CUDART_CB *cudaStreamCallback_t)(cudaStream_tstream,cudaError_t status,

void *userData)

Functions
cudaError_t cudaStreamAddCallback (cudaStream_tstream,cudaStreamCallback_tcallback,

void *userData, unsigned int flags)
Add a callback to a compute stream.

__cudart_builtin__cudaError_t cudaStreamAttachMemAsync(cudaStream_tstream, void
*devPtr, size_t length, unsigned int flags)
Attach memory to a stream asynchronously.

cudaError_t cudaStreamCreate(cudaStream_t*pStream)
Create an asynchronous stream.

__cudart_builtin__cudaError_t cudaStreamCreateWithFlags(cudaStream_t*pStream, unsigned
int flags)
Create an asynchronous stream.

__cudart_builtin__cudaError_t cudaStreamCreateWithPriority (cudaStream_t*pStream,
unsigned int flags, int priority)
Create an asynchronous stream with the specified priority.

__cudart_builtin__cudaError_t cudaStreamDestroy(cudaStream_tstream)
Destroys and cleans up an asynchronous stream.

__cudart_builtin__cudaError_t cudaStreamGetFlags(cudaStream_thStream, unsigned int *flags)
Query the flags of a stream.

__cudart_builtin__cudaError_t cudaStreamGetPriority (cudaStream_thStream, int *priority)
Query the priority of a stream.

cudaError_t cudaStreamQuery (cudaStream_tstream)
Queries an asynchronous stream for completion status.

cudaError_t cudaStreamSynchronize(cudaStream_tstream)
Waits for stream tasks to complete.

__cudart_builtin__cudaError_t cudaStreamWaitEvent (cudaStream_tstream,cudaEvent_tev ent,
unsigned int flags)
Make a compute stream wait on an event.

Detailed Description
\brief stream management functions of the CUDA runtime API (cuda_runtime_api.h)

This section describes the stream management functions of the CUDA runtime application
programming interface.

Typedef Documentation
typedef void(CUDART_CB * cudaStreamCallback_t)(cudaStream_t stream, cudaError_t status, void

*userData)
Type of stream callback functions.

Parameters:
streamThe stream as passed tocudaStreamAddCallback, may be NULL.
statuscudaSuccessor any persistent error on the stream.
userDataUser parameter provided at registration.

Function Documentation
cudaError_t cudaStreamAddCallback (cudaStream_t stream, cudaStreamCallback_t callback, void *

userData, unsigned int flags)
Adds a callback to be called on the host after all currently enqueued items in the stream have
completed. For each cudaStreamAddCallback call, a callback will be executed exactly once. The
callback will block later work in the stream until it is finished.

The callback may be passedcudaSuccessor an error code. In the event of a device error, all
subsequently executed callbacks will receive an appropriatecudaError_t .

Callbacks must not make any CUDA API calls. Attempting to use CUDA APIs will result in
cudaErrorNotPermitted . Callbacks must not perform any synchronization that may depend on

Version 6.0 7 Aug 2014 1

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cudaStreamSynchronize


Stream Management(3) Doxygen StreamManagement(3)

outstanding device work or other callbacks that are not mandated to run earlier. Callbacks without a
mandated order (in independent streams) execute in undefined order and may be serialized.

This API requires compute capability 1.1 or greater. SeecudaDeviceGetAttributeor
cudaGetDevicePropertiesto query compute capability. Calling this API with an earlier compute
version will returncudaErrorNotSupported.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

• The callback stream is considered idle for the duration of the callback. Thus, for example, a callback
may always use memory attached to the callback stream.

• The start of execution of a callback has the same effect as synchronizing an event recorded in the
same stream immediately prior to the callback. It thus synchronizes streams which have been
’joined’ prior to the callback.

• Adding device work to any stream does not have the effect of making the stream active until all
preceding callbacks have executed. Thus, for example, a callback might use global attached memory
ev en if work has been added to another stream, if it has been properly ordered with an event.

• Completion of a callback does not cause a stream to become active except as described above. The
callback stream will remain idle if no device work follows the callback, and will remain idle across
consecutive callbacks without device work in between. Thus, for example, stream synchronization
can be done by signaling from a callback at the end of the stream.

Parameters:
stream- Stream to add callback to
callback- The function to call once preceding stream operations are complete
userData- User specified data to be passed to the callback function
flags- Reserved for future use, must be 0

Returns:
cudaSuccess, cudaErrorIn validResourceHandle, cudaErrorNotSupported

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamDestroy, cudaMallocManaged,
cudaStreamAttachMemAsync

__cudart_builtin__ cudaError_t cudaStreamAttachMemAsync (cudaStream_t stream, void * devPtr,
size_t length, unsigned int flags)
Enqueues an operation instream to specify stream association oflength bytes of memory starting
from devPtr. This function is a stream-ordered operation, meaning that it is dependent on, and will
only take effect when, previous work in stream has completed. Any previous association is
automatically replaced.
devPtr must point to an address within managed memory space declared using the __managed__
keyword or allocated withcudaMallocManaged.
length must be zero, to indicate that the entire allocation’s stream association is being changed.
Currently, it’s not possible to change stream association for a portion of an allocation.
The stream association is specified usingflags which must be one ofcudaMemAttachGlobal,
cudaMemAttachHostor cudaMemAttachSingle. If thecudaMemAttachGlobal flag is specified, the
memory can be accessed by any stream on any device. If thecudaMemAttachHostflag is specified,
the program makes a guarantee that it won’t access the memory on the device from any stream. If the
cudaMemAttachSingleflag is specified, the program makes a guarantee that it will only access the
memory on the device fromstream. It is illegal to attach singly to the NULL stream, because the
NULL stream is a virtual global stream and not a specific stream. An error will be returned in this case.
When memory is associated with a single stream, the Unified Memory system will allow CPU access to
this memory region so long as all operations instream have completed, regardless of whether other
streams are active. In effect, this constrains exclusive ownership of the managed memory region by an
active GPU to per-stream activity instead of whole-GPU activity.
Accessing memory on the device from streams that are not associated with it will produce undefined
results. No error checking is performed by the Unified Memory system to ensure that kernels launched
into other streams do not access this region.
It is a program’s responsibility to order calls tocudaStreamAttachMemAsyncvia events,

Version 6.0 7 Aug 2014 2

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cudaStreamSynchronize


Stream Management(3) Doxygen StreamManagement(3)

synchronization or other means to ensure legal access to memory at all times. Data visibility and
coherency will be changed appropriately for all kernels which follow a stream-association change.
If stream is destroyed while data is associated with it, the association is removed and the association
reverts to the default visibility of the allocation as specified atcudaMallocManaged. For
__managed__ variables, the default association is always cudaMemAttachGlobal. Note that
destroying a stream is an asynchronous operation, and as a result, the change to default association
won’t happen until all work in the stream has completed.
Parameters:

stream- Stream in which to enqueue the attach operation
devPtr- Pointer to memory (must be a pointer to managed memory)
length- Length of memory (must be zero)
flags- Must be one ofcudaMemAttachGlobal, cudaMemAttachHostor
cudaMemAttachSingle

Returns:
cudaSuccess, cudaErrorNotReady, cudaErrorIn validValue
cudaErrorIn validResourceHandle

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy,
cudaMallocManaged

cudaError_t cudaStreamCreate (cudaStream_t * pStream)
Creates a new asynchronous stream.
Parameters:

pStream- Pointer to new stream identifier
Returns:

cudaSuccess, cudaErrorIn validValue
Note:

Note that this function may also return error codes from previous, asynchronous launches.
See also:

cudaStreamCreateWithPriority , cudaStreamCreateWithFlags, cudaStreamGetPriority,
cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy

__cudart_builtin__ cudaError_t cudaStreamCreateWithFlags (cudaStream_t * pStream, unsigned int
flags)
Creates a new asynchronous stream. Theflags argument determines the behaviors of the stream.
Valid values forflags are
• cudaStreamDefault: Default stream creation flag.
• cudaStreamNonBlocking: Specifies that work running in the created stream may run concurrently

with work in stream 0 (the NULL stream), and that the created stream should perform no implicit
synchronization with stream 0.

Parameters:
pStream- Pointer to new stream identifier
flags- Parameters for stream creation

Returns:
cudaSuccess, cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreate, cudaStreamCreateWithPriority , cudaStreamGetFlags,
cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy

__cudart_builtin__ cudaError_t cudaStreamCreateWithPriority (cudaStream_t * pStream, unsigned
int flags, int priority)
Creates a stream with the specified priority and returns a handle inpStream. This API alters the
scheduler priority of work in the stream. Work in a higher priority stream may preempt work already
executing in a low priority stream.
priority follows a convention where lower numbers represent higher priorities. ’0’ represents

Version 6.0 7 Aug 2014 3

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cudaStreamSynchronize


Stream Management(3) Doxygen StreamManagement(3)

default priority. The range of meaningful numerical priorities can be queried using
cudaDeviceGetStreamPriorityRange. If the specified priority is outside the numerical range returned
by cudaDeviceGetStreamPriorityRange, it will automatically be clamped to the lowest or the highest
number in the range.
Parameters:

pStream- Pointer to new stream identifier
flags- Flags for stream creation. SeecudaStreamCreateWithFlagsfor a list of valid flags that
can be passed
priority - Priority of the stream. Lower numbers represent higher priorities. See
cudaDeviceGetStreamPriorityRangefor more information about the meaningful stream
priorities that can be passed.

Returns:
cudaSuccess, cudaErrorIn validValue

Note:
Note that this function may also return error codes from previous, asynchronous launches.
Stream priorities are supported only on Quadro and Tesla GPUs with compute capability 3.5 or
higher.
In the current implementation, only compute kernels launched in priority streams are affected by
the stream’s priority. Stream priorities have no effect on host-to-device and device-to-host memory
operations.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaDeviceGetStreamPriorityRange,
cudaStreamGetPriority, cudaStreamQuery, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamSynchronize, cudaStreamDestroy

__cudart_builtin__ cudaError_t cudaStreamDestroy (cudaStream_t stream)
Destroys and cleans up the asynchronous stream specified bystream.
In case the device is still doing work in the streamstream whencudaStreamDestroy()is called, the
function will return immediately and the resources associated withstream will be released
automatically once the device has completed all work instream.
Parameters:

stream- Stream identifier
Returns:

cudaSuccess, cudaErrorIn validResourceHandle
Note:

Note that this function may also return error codes from previous, asynchronous launches.
See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback

__cudart_builtin__ cudaError_t cudaStreamGetFlags (cudaStream_t hStream, unsigned int * flags)
Query the flags of a stream. The flags are returned inflags. SeecudaStreamCreateWithFlagsfor a
list of valid flags.
Parameters:

hStream- Handle to the stream to be queried
flags- Pointer to an unsigned integer in which the stream’s flags are returned

Returns:
cudaSuccess, cudaErrorIn validValue, cudaErrorIn validResourceHandle

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreateWithPriority , cudaStreamCreateWithFlags, cudaStreamGetPriority

__cudart_builtin__ cudaError_t cudaStreamGetPriority (cudaStream_t hStream, int * priority)
Query the priority of a stream. The priority is returned in inpriority. Note that if the stream was
created with a priority outside the meaningful numerical range returned by
cudaDeviceGetStreamPriorityRange, this function returns the clamped priority. See
cudaStreamCreateWithPriority for details about priority clamping.
Parameters:

hStream- Handle to the stream to be queried
priority - Pointer to a signed integer in which the stream’s priority is returned

Returns:

Version 6.0 7 Aug 2014 4

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cudaStreamSynchronize


Stream Management(3) Doxygen StreamManagement(3)

cudaSuccess, cudaErrorIn validValue, cudaErrorIn validResourceHandle
Note:

Note that this function may also return error codes from previous, asynchronous launches.
See also:

cudaStreamCreateWithPriority , cudaDeviceGetStreamPriorityRange, cudaStreamGetFlags
cudaError_t cudaStreamQuery (cudaStream_t stream)

ReturnscudaSuccessif all operations instream have completed, orcudaErrorNotReady if not.
For the purposes of Unified Memory, a return value ofcudaSuccessis equivalent to having called
cudaStreamSynchronize().
Parameters:

stream- Stream identifier
Returns:

cudaSuccess, cudaErrorNotReady, cudaErrorIn validResourceHandle
Note:

Note that this function may also return error codes from previous, asynchronous launches.
See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy

cudaError_t cudaStreamSynchronize (cudaStream_t stream)
Blocks untilstream has completed all operations. If thecudaDeviceScheduleBlockingSyncflag was
set for this device, the host thread will block until the stream is finished with all of its tasks.
Parameters:

stream- Stream identifier
Returns:

cudaSuccess, cudaErrorIn validResourceHandle
Note:

Note that this function may also return error codes from previous, asynchronous launches.
See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamDestroy

__cudart_builtin__ cudaError_t cudaStreamWaitEvent (cudaStream_t stream, cudaEvent_t event,
unsigned int flags)
Makes all future work submitted tostream wait until event reports completion before beginning
execution. This synchronization will be performed efficiently on the device. The event event may be
from a different context thanstream, in which case this function will perform cross-device
synchronization.
The streamstream will wait only for the completion of the most recent host call to
cudaEventRecord()onevent. Once this call has returned, any functions (including
cudaEventRecord()andcudaEventDestroy()) may be called onevent again, and the subsequent
calls will not have any effect onstream.
If cudaEventRecord()has not been called onevent, this call acts as if the record has already
completed, and so is a functional no-op.
Parameters:

stream- Stream to wait
event- Event to wait on
flags- Parameters for the operation (must be 0)

Returns:
cudaSuccess, cudaErrorIn validResourceHandle

Note:
This function uses standard semantics.
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy

Author
Generated automatically by Doxygen from the source code.

Version 6.0 7 Aug 2014 5

man.m.sourcentral.orgUbuntu 15.10 (Wily Werewolf)

https://man.m.sourcentral.org/ubuntu1510/3+cudaStreamSynchronize

