NAME

```
cunmr3.f -
```


SYNOPSIS

Functions/Subroutines
subroutine cunmr3 (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, INFO)
CUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).

Function/Subroutine Documentation

subroutine cunmr3 (characterSIDE, characterTRANS, integerM, integerN, integerK, integerL, complex, dimension(lda, *)A, integerLDA, complex, dimension(*)TAU, complex, dimension(ldc, *)C, integerLDC, complex, dimension(*)WORK, integerINFO)
CUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).

Purpose:

CUNMR3 overwrites the general complex m by n matrix C with

$$
\begin{aligned}
& \mathrm{Q} * \mathrm{C} \text { if } \operatorname{SIDE}={ }^{\prime} \mathrm{L}^{\prime} \text { and TRANS }={ }^{\prime} \mathrm{N}^{\prime} \text {, or } \\
& \mathrm{Q}^{*}{ }^{*} \mathrm{H}^{*} \mathrm{C} \text { if SIDE }={ }^{\prime} \mathrm{L}^{\prime} \text { and TRANS }={ }^{\prime} \mathrm{C}^{\prime} \text {, or } \\
& \mathrm{C} * \mathrm{Q} \text { if SIDE }=\text { ' } \mathrm{R} \text { ' and TRANS }={ }^{\prime} \mathrm{N}^{\prime} \text {, or } \\
& \mathrm{C} * \mathrm{Q}^{* *} \mathrm{H} \text { if SIDE }={ }^{\prime} \mathrm{R}^{\prime} \text { and TRANS }={ }^{\prime} \mathrm{C}^{\prime},
\end{aligned}
$$

where Q is a complex unitary matrix defined as the product of k elementary reflectors

$$
\mathrm{Q}=\mathrm{H}(1) \mathrm{H}(2) \ldots \mathrm{H}(\mathrm{k})
$$

as returned by CTZRZF. Q is of order m if $\operatorname{SIDE}=$ ' L ' and of order n if SIDE = 'R'.

Parameters:

SIDE
SIDE is CHARACTER*1
$=$ 'L': apply Q or $\mathrm{Q}^{* *} \mathrm{H}$ from the Left
$=$ 'R': apply Q or $\mathrm{Q}^{* *} \mathrm{H}$ from the Right
TRANS
TRANS is CHARACTER*1
= 'N': apply Q (No transpose)
$={ }^{\prime} \mathrm{C}^{\prime}$: apply $\mathrm{Q}^{* *} \mathrm{H}$ (Conjugate transpose)
M
M is INTEGER
The number of rows of the matrix $\mathrm{C} . \mathrm{M}>=0$.

N is INTEGER
The number of columns of the matrix $\mathrm{C} . \mathrm{N}>=0$.

K

K is INTEGER
The number of elementary reflectors whose product defines the matrix Q .
If SIDE $=$ ' $L^{\prime}, \mathrm{M}>=\mathrm{K}>=0$;
if SIDE $=$ ' R ', $\mathrm{N}>=\mathrm{K}>=0$.
L

L is INTEGER

The number of columns of the matrix A containing the meaningful part of the Householder reflectors. If SIDE $=$ ' $\mathrm{L}, \mathrm{M}>=\mathrm{L}>=0$, if SIDE $={ }^{\prime} \mathrm{R}^{\prime}, \mathrm{N}>=\mathrm{L}>=0$.

A
A is COMPLEX array, dimension
$($ LDA,M $)$ if SIDE $=$ 'L',
$(\mathrm{LDA}, \mathrm{N})$ if SIDE $=$ ' R '
The i-th row must contain the vector which defines the elementary reflector $\mathrm{H}(\mathrm{i})$, for $\mathrm{i}=1,2, \ldots, \mathrm{k}$, as returned by CTZRZF in the last k rows of its array argument A. A is modified by the routine but restored on exit.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA $>=\max (1, \mathrm{~K})$.
$T A U$
TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary reflector $\mathrm{H}(\mathrm{i})$, as returned by CTZRZF.

C
C is COMPLEX array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by $\mathrm{Q}^{*} \mathrm{C}$ or $\mathrm{Q}^{* *} \mathrm{H}^{*} \mathrm{C}$ or $\mathrm{C}^{*} \mathrm{Q}^{* *} \mathrm{H}$ or $\mathrm{C}^{*} \mathrm{Q}$.
LDC
LDC is INTEGER
The leading dimension of the array $\mathrm{C} . \mathrm{LDC}>=\max (1, \mathrm{M})$.

WORK

WORK is COMPLEX array, dimension
(N) if SIDE = 'L',
(M) if SIDE $=$ ' R '
INFO
INFO is INTEGER
= 0: successful exit
<0 : if INFO $=-$ i, the i-th argument had an illegal value

Author:

Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Date:

September 2012

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

Definition at line 178 of file cunmr3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

