
PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categories:
list operators and named unary operators.These differ in their precedence relationship with a
following comma. (See the precedence table in perlop.) List operators take more than one argument,
while unary operators can never take more than one argument. Thus,a comma terminates the argument
of a unary operator, but merely separates the arguments of a list operator. A unary operator generally
provides scalar context to its argument, while a list operator may provide either scalar or list contexts
for its arguments. Ifit does both, scalar arguments come first and list argument follow, and there can
only ever be one such list argument. For instance,splice has three scalar arguments followed by a
list, whereasgethostbyname has four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for
elements of the list) are shown withLIST as an argument. Sucha list may consist of any combination
of scalar arguments or list values; the list values will be included in the list as if each individual
element were interpolated at that point in the list, forming a longer single-dimensional list value.
Commas should separate literal elements of theLIST.

Any function in the list below may be used either with or without parentheses around its arguments.
(The syntax descriptions omit the parentheses.) If you use parentheses, the simple but occasionally
surprising rule is this: Itlookslike a function, therefore itis a function, and precedence doesn’t matter.
Otherwise it’s a list operator or unary operator, and precedence does matter. Whitespace between the
function and left parenthesis doesn’t count, so sometimes you need to be careful:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with theuse warnings pragma, it can warn you about this.For example, the third
line above produces:

print (...) interpreted as function at − line 1.
Useless use of integer addition in void context at − line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators.These
include such functions astime and endpwent . For example, time+86_400 always means
time() + 86_400 .

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated
in scalar context by returning the undefined value, and in list context by returning the empty list.

Remember the following important rule: There isno rule that relates the behavior of an expression in
list context to its behavior in scalar context, or vice versa. Itmight do two totally different things.
Each operator and function decides which sort of value would be most appropriate to return in scalar
context. Someoperators return the length of the list that would have been returned in list context.
Some operators return the first value in the list. Some operators return the last value in the list.Some
operators return a count of successful operations. In general, they do what you want, unless you want
consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can’t get a list like (1,2,3) into being in scalar context, because the compiler
knows the context at compile time. It would generate the scalar comma operator there, not the list
concatenation version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls (‘‘syscalls’’) of the same name (like
chown(2), fork (2), closedir(2), etc.) return true when they succeed andundef otherwise, as is usually
mentioned in the descriptions below. This is different from the C interfaces, which return−1 on
failure. Exceptionsto this rule includewait , waitpid , and syscall . System calls also set the
special$! variable on failure. Otherfunctions do not, except accidentally.

Extension modules can also hook into the Perl parser to define new kinds of keyword-headed
expression. Thesemay look like functions, but may also look completely different. Thesyntax

perl v5.26.0 2018-06-12 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

following the keyword is defined entirely by the extension. If you are an implementor, see
‘‘ PL_keyword_plugin’’ in perlapi for the mechanism.If you are using such a module, see the module’s
documentation for details of the syntax that it defines.

Perl Functions by Category
Here are Perl’s functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop , chr , crypt , fc , hex , index , lc , lcfirst , length , oct , ord , pack ,
q// , qq// , reverse , rindex , sprintf , substr , tr/// , uc , ucfirst , y///

fc is available only if the"fc" feature is enabled or if it is prefixed withCORE:: . The "fc"
feature is enabled automatically with ause v5.16 (or higher) declaration in the current scope.

Regular expressions and pattern matching
m// , pos , qr// , quotemeta , s/// , split , study

Numeric functions
abs , atan2 , cos , exp , hex , int , log , oct , rand , sin , sqrt , srand

Functions for real@ARRAYs
each , keys , pop , push , shift , splice , unshift , values

Functions for list data
grep , join , map, qw// , reverse , sort , unpack

Functions for real%HASHes
delete , each , exists , keys , values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock ,
format , getc , print , printf , read , readdir , readline , rewinddir , say , seek ,
seekdir , select , syscall , sysread , sysseek , syswrite , tell , telldir ,
truncate , warn , write

say is available only if the"say" feature is enabled or if it is prefixed withCORE:: . The
"say" feature is enabled automatically with ause v5.10 (or higher) declaration in the current
scope.

Functions for fixed-length data or records
pack , read , syscall , sysread , sysseek , syswrite , unpack , vec

Functions for filehandles, files, or directories
−X, chdir , chmod, chown , chroot , fcntl , glob , ioctl , link , lstat , mkdir , open ,
opendir , readlink , rename , rmdir , select , stat , symlink , sysopen , umask,
unlink , utime

Ke ywords related to the control flow of your Perl program
break , caller , continue , die , do , dump, eval , evalbytes , exit , _ _FILE_ _ ,
goto , last , _ _LINE_ _ , next , _ _PACKAGE_ _, redo , return , sub , _ _SUB_ _ ,
wantarray

break is available only if you enable the experimental"switch" feature or use theCORE::
prefix. The"switch" feature also enables thedefault , given andwhen statements, which
are documented in ‘‘Switch Statements’’ in perlsyn. The "switch" feature is enabled
automatically with ause v5.10 (or higher) declaration in the current scope. In Perl v5.14 and
earlier,continue required the"switch" feature, like the other keywords.

evalbytes is only available with the"evalbytes" feature (see feature) or if prefixed with
CORE:: . _ _SUB_ _ is only available with the"current_sub" feature or if prefixed with
CORE:: . Both the"evalbytes" and "current_sub" features are enabled automatically
with ause v5.16 (or higher) declaration in the current scope.

Ke ywords related to scoping
caller , import , local , my, our , package , state , use

state is available only if the"state" feature is enabled or if it is prefixed withCORE:: . The

perl v5.26.0 2018-06-12 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

"state" feature is enabled automatically with ause v5.10 (or higher) declaration in the
current scope.

Miscellaneous functions
defined , formline , lock , prototype , reset , scalar , undef

Functions for processes and process groups
alarm , exec , fork , getpgrp , getppid , getpriority , kill , pipe , qx// ,
readpipe , setpgrp , setpriority , sleep , system , times , wait , waitpid

Ke ywords related to Perl modules
do , import , no , package , require , use

Ke ywords related to classes and object-orientation
bless , dbmclose , dbmopen, package , ref , tie , tied , untie , use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt , listen , recv ,
send , setsockopt , shutdown , socket , socketpair

System V interprocess communication functions
msgctl , msgget , msgrcv , msgsnd , semctl , semget , semop, shmctl , shmget ,
shmread , shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam , getpwuid , setgrent , setpwent

Fetching network info
endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent ,
getnetbyaddr , getnetbyname , getnetent , getprotobyname ,
getprotobynumber , getprotoent , getservbyname , getservbyport ,
getservent , sethostent , setnetent , setprotoent , setservent

Time-related functions
gmtime , localtime , time , times

Non-function keywords
and , AUTOLOAD, BEGIN, CHECK, cmp, CORE, _ _DATA_ _ , default , DESTROY, else ,
elseif , elsif , END, _ _END_ _ , eq , for , foreach , ge , given , gt , if , INIT , le , lt ,
ne , not , or , UNITCHECK, unless , until , when, while , x , xor

Portability
Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix
environments, the functionality of some Unix system calls may not be available or details of the
available functionality may differ slightly. The Perl functions affected by this are:

−X, binmode , chmod, chown , chroot , crypt , dbmclose , dbmopen, dump, endgrent ,
endhostent , endnetent , endprotoent , endpwent , endservent , exec , fcntl , flock ,
fork , getgrent , getgrgid , gethostbyname , gethostent , getlogin , getnetbyaddr ,
getnetbyname , getnetent , getppid , getpgrp , getpriority , getprotobynumber ,
getprotoent , getpwent , getpwnam , getpwuid , getservbyport , getservent ,
getsockopt , glob , ioctl , kill , link , lstat , msgctl , msgget , msgrcv , msgsnd , open ,
pipe , readlink , rename , select , semctl , semget , semop, setgrent , sethostent ,
setnetent , setpgrp , setpriority , setprotoent , setpwent , setservent ,
setsockopt , shmctl , shmget , shmread , shmwrite , socket , socketpair , stat ,
symlink , syscall , sysopen , system , times , truncate , umask, unlink , utime , wait ,
waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

Alphabetical Listing of Perl Functions
−X FILEHANDLE
−X EXPR

perl v5.26.0 2018-06-12 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

−X DIRHANDLE
−X A file test, where X is one of the letters listed below. This unary operator takes one argument,

either a filename, a filehandle, or a dirhandle, and tests the associated file to see if something is
true about it. If the argument is omitted, tests$_ , except for −t , which testsSTDIN. Unless
otherwise documented, it returns1 for true and'' for false. If the file doesn’t exist or can’t be
examined, it returnsundef and sets$! (errno). Despitethe funny names, precedence is the same
as any other named unary operator. The operator may be any of:

−r File is readable by effective uid/gid.
−w File is writable by effective uid/gid.
−x File is executable by effective uid/gid.
−o File is owned by effective uid.

−R File is readable by real uid/gid.
−W File is writable by real uid/gid.
−X File is executable by real uid/gid.
−O File is owned by real uid.

−e File exists.
−z File has zero size (is empty).
−s File has nonzero size (returns size in bytes).

−f File is a plain file.
−d File is a directory.
−l File is a symbolic link (false if symlinks aren't

supported by the file system).
−p File is a named pipe (FIFO), or Filehandle is a pipe.
−S File is a socket.
−b File is a block special file.
−c File is a character special file.
−t Filehandle is opened to a tty.

−u File has setuid bit set.
−g File has setgid bit set.
−k File has sticky bit set.

−T File is an ASCII or UTF−8 text file (heuristic guess).
−B File is a "binary" file (opposite of −T).

−M Script start time minus file modification time, in days.
−A Same for access time.
−C Same for inode change time (Unix, may differ for other

platforms)

Example:

while (<>) {
chomp;
next unless −f $_; # i gnore specials
#...

}

Note that−s/a/b/ does not do a negated substitution.Saying −exp($foo) still works as
expected, however: only single letters following a minus are interpreted as file tests.

These operators are exempt from the ‘‘looks like a function rule’’ described above. That is, an
opening parenthesis after the operator does not affect how much of the following code constitutes
the argument. Putthe opening parentheses before the operator to separate it from code that
follows (this applies only to operators with higher precedence than unary operators, of course):

perl v5.26.0 2018-06-12 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

−s($file) + 1024 # probably wrong; same as −s($file + 1024)
(−s $file) + 1024 # c orrect

The interpretation of the file permission operators−r , −R, −w, −W, −x , and −X is by default based
solely on the mode of the file and the uids and gids of the user. There may be other reasons you
can’t actually read, write, or execute the file: for example network filesystem access controls,
ACLs (access control lists), read-only filesystems, and unrecognized executable formats.Note
that the use of these six specific operators to verify if some operation is possible is usually a
mistake, because it may be open to race conditions.

Also note that, for the superuser on the local filesystems, the−r , −R, −w, and −Wtests always
return 1, and−x and−X return 1 if any execute bit is set in the mode. Scripts run by the superuser
may thus need to do astat to determine the actual mode of the file, or temporarily set their
effective uid to something else.

If you are using ACLs, there is a pragma calledfiletest that may produce more accurate
results than the barestat mode bits. When underuse filetest 'access' , the above-
mentioned filetests test whether the permission can(not) be granted using theaccess(2) family of
system calls. Also note that the−x and−X tests may under this pragma return true even if there
are no execute permission bits set (nor any extra execute permission ACLs). Thisstrangeness is
due to the underlying system calls’ definitions. Note also that, due to the implementation ofuse
filetest 'access' , the _ special filehandle won’t cache the results of the file tests when
this pragma is in effect. Read the documentation for thefiletest pragma for more
information.

The −T and−B tests work as follows. Thefirst block or so of the file is examined to see if it is
valid UTF−8 that includes non-ASCII characters. If so, it’s a−T file. Otherwise,that same portion
of the file is examined for odd characters such as strange control codes or characters with the high
bit set. If more than a third of the characters are strange, it’s a−B file; otherwise it’s a−T file.
Also, any file containing a zero byte in the examined portion is considered a binary file.(If
executed within the scope of a useÂlocale which includesLC_CTYPE, odd characters are
anything that isn’t a printable nor space in the current locale.)If −T or −B is used on a filehandle,
the currentIO buffer is examined rather than the first block.Both −T and−B return true on an
empty file, or a file atEOFwhen testing a filehandle. Because you have to read a file to do the−T
test, on most occasions you want to use a−f against the file first, as innext unless −f
$file && −T $file .

If any of the file tests (or either thestat or lstat operator) is given the special filehandle
consisting of a solitary underline, then the stat structure of the previous file test (orstat
operator) is used, saving a system call. (This doesn’t work with −t , and you need to remember
that lstat and −l leave values in the stat structure for the symbolic link, not the real file.)
(Also, if the stat buffer was filled by anlstat call, −T and−B will reset it with the results of
stat _). Example:

print "Can do.\n" if −r $a || −w _ || −x _;

stat($filename);
print "Readable\n" if −r _;
print "Writable\n" if −w _;
print "Executable\n" if −x _;
print "Setuid\n" if −u _;
print "Setgid\n" if −g _;
print "Sticky\n" if −k _;
print "Text\n" if −T _;
print "Binary\n" if −B _;

As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file test operators, in a way
that−f −w −x $file is equivalent to−x $file && −w _ && −f _ . (This is only fancy
syntax: if you use the return value of−f $file as an argument to another filetest operator, no
special magic will happen.)

Portability issues: ‘‘−X’’ in perlport.

perl v5.26.0 2018-06-12 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

To avoid confusing would-be users of your code with mysterious syntax errors, put something like
this at the top of your script:

use 5.010; # so f iletest ops can stack

absVALUE
abs Returns the absolute value of its argument. IfVALUE is omitted, uses$_ .

acceptNEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just asaccept(2) does. Returns the packed address if it
succeeded, false otherwise. See the example in ‘‘Sockets: Client/Server Communication’’ i n
perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of$ˆF . See ‘‘$ˆF’’ in perlvar.

alarmSECONDS
alarm

Arranges to have a SIGALRM delivered to this process after the specified number of wallclock
seconds has elapsed.If SECONDSis not specified, the value stored in$_ is used. (On some
machines, unfortunately, the elapsed time may be up to one second less or more than you specified
because of how seconds are counted, and process scheduling may delay the delivery of the signal
ev en further.)

Only one timer may be counting at once.Each call disables the previous timer, and an argument
of 0 may be supplied to cancel the previous timer without starting a new one. Thereturned value
is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module (fromCPAN, and starting
from Perl 5.8 part of the standard distribution) providesualarm . You may also use Perl’s four-
argument version ofselect leaving the first three arguments undefined, or you might be able to
use thesyscall interface to accesssetitimer(2) if your system supports it. See perlfaq8 for
details.

It is usually a mistake to intermix alarm and sleep calls, becausesleep may be internally
implemented on your system withalarm .

If you want to usealarm to time out a system call you need to use aneval /die pair. You can’t
rely on the alarm causing the system call to fail with$! set toEINTR because Perl sets up signal
handlers to restart system calls on some systems.Using eval /die always works, modulo the
caveats given in ‘‘Signals’’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
my $nread = sysread $socket, $buffer, $size;
alarm 0;

};
if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
t imed out

}
else {

didn't
}

For more information see perlipc.

Portability issues: ‘‘alarm’’ in perlport.

atan2 Y,X
Returns the arctangent of Y/X in the range −PI toPI.

For the tangent operation, you may use theMath::Trig::tan function, or use the familiar
relation:

perl v5.26.0 2018-06-12 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sub tan { sin($_[0]) / cos($_[0]) }

The return value foratan2(0,0) is implementation-defined; consult youratan2(3) manpage
for more information.

Portability issues: ‘‘atan2’’ in perlport.

bind SOCKET,NAME
Binds a network address to a socket, just asbind(2) does. Returns true if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. Seethe
examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

binmodeFILEHANDLE, LAYER
binmodeFILEHANDLE

Arranges forFILEHANDLE to be read or written in ‘‘binary’’ or ‘ ‘text’’ mode on systems where
the run-time libraries distinguish between binary and text files.If FILEHANDLE is an expression,
the value is taken as the name of the filehandle.Returns true on success, otherwise it returns
undef and sets$! (errno).

On some systems (in general,DOS− and Windows-based systems)binmode is necessary when
you’re not working with a text file. For the sake of portability it is a good idea always to use it
when appropriate, and never to use it when it isn’t appropriate. Also,people can set their I/O to be
by default UTF8−encoded Unicode, not bytes.

In other words: regardless of platform, usebinmode on binary data, like images, for example.

If LAYER is present it is a single string, but may contain multiple directives. Thedirectives alter
the behaviour of the filehandle.When LAYER is present, using binmode on a text file makes
sense.

If LAYER is omitted or specified as:raw the filehandle is made suitable for passing binary data.
This includes turning off possible CRLF translation and marking it as bytes (as opposed to
Unicode characters).Note that, despite what may be implied in‘‘ Programming Perl’’ (the Camel,
3rd edition) or elsewhere, :raw is not simply the inverse of :crlf . Other layers that would
affect the binary nature of the stream arealso disabled. SeePerlIO, perlrun, and the discussion
about thePERLIOenvironment variable.

The :bytes , :crlf , :utf8 , and any other directives of the form:... , are called I/Olayers.
The open pragma can be used to establish default I/O layers.

TheLAYERparameter of thebinmode function is described as ‘‘DISCIPLINE’’ in ‘‘Programming
Perl, 3rd Edition’’. However, since the publishing of this book, by many known as ‘‘Camel III’’, the
consensus of the naming of this functionality has moved from ‘‘discipline’’ to ‘‘layer’’. All
documentation of this version of Perl therefore refers to ‘‘layers’’ r ather than to ‘‘disciplines’’.
Now back to the regularly scheduled documentation...

To mark FILEHANDLE asUTF−8, use:utf8 or :encoding(UTF−8) . :utf8 just marks the
data asUTF−8 without further checking, while:encoding(UTF−8) checks the data for
actually being validUTF−8. More details can be found in PerlIO::encoding.

In general,binmode should be called afteropen but before any I/O is done on the filehandle.
Calling binmode normally flushes any pending buffered output data (and perhaps pending input
data) on the handle. An exception to this is the:encoding layer that changes the default
character encoding of the handle.The :encoding layer sometimes needs to be called in mid-
stream, and it doesn’t flush the stream.:encoding also implicitly pushes on top of itself the
:utf8 layer because internally Perl operates on UTF8−encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time system all conspire to let the
programmer treat a single character (\n) as the line terminator, irrespective of external
representation. Onmany operating systems, the native text file representation matches the internal
representation, but on some platforms the external representation of\n is made up of more than
one character.

All variants of Unix, MacOS (old and new), and Stream_LF files onVMS use a single character to
end each line in the external representation of text (even though that single character isCARRIAGE
RETURN on old, pre-Darwin flavors of MacOS,and isLINE FEED on Unix and mostVMS files).

perl v5.26.0 2018-06-12 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

In other systems like OS/2, DOS,and the various flavors of MS-Windows, your program sees a\n
as a simple\cJ , but what’s stored in text files are the two characters\cM\cJ . That means that if
you don’t usebinmode on these systems,\cM\cJ sequences on disk will be converted to\n on
input, and any \n in your program will be converted back to\cM\cJ on output. This is what you
want for text files, but it can be disastrous for binary files.

Another consequence of usingbinmode (on some systems) is that special end-of-file markers
will be seen as part of the data stream.For systems from the Microsoft family this means that, if
your binary data contain\cZ , the I/O subsystem will regard it as the end of the file, unless you
usebinmode .

binmode is important not only forreadline and print operations, but also when using
read , seek , sysread , syswrite and tell (see perlport for more details).See the$/ and
$\ variables in perlvar for how to manually set your input and output line-termination sequences.

Portability issues: ‘‘binmode’’ in perlport.

blessREF,CLASSNAME
blessREF

This function tells the thingy referenced byREF that it is now an object in theCLASSNAME
package. IfCLASSNAME is omitted, the current package is used. Because abless is often the
last thing in a constructor, it returns the reference for convenience. Always use the two-argument
version if a derived class might inherit the method doing the blessing.See perlobj for more about
the blessing (and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmas. Builtin types have all uppercase
names. To prevent confusion, you may wish to avoid such package names as well.Make sure that
CLASSNAME is a true value.

See ‘‘Perl Modules’’ in perlmod.

break
Break out of agiven block.

break is available only if the"switch" feature is enabled or if it is prefixed withCORE:: .
The "switch" feature is enabled automatically with ause v5.10 (or higher) declaration in
the current scope.

callerEXPR
caller

Returns the context of the current pure perl subroutine call. In scalar context, returns the caller’s
package name if thereis a caller (that is, if we’re in a subroutine oreval or require) and the
undefined value otherwise. caller never returnsXS subs and they are skipped. The next pure perl
sub will appear instead of theXS sub in caller’s return values. Inlist context, caller returns

0 1 2
my ($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace.The
value ofEXPR indicates how many call frames to go back before the current one.

0 1 2 3 4
my ($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 1 0
$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

= caller($i);

Here,$subroutine is the function that the caller called (rather than the function containing the
caller). Notethat $subroutine may be(eval) if the frame is not a subroutine call, but an
eval . In such a case additional elements$evaltext and $is_require are set:
$is_require is true if the frame is created by arequire or use statement,$evaltext
contains the text of theeval EXPR statement. Inparticular, for aneval BLOCK statement,
$subroutine is (eval) , but $evaltext is undefined. (Note also that eachuse statement

perl v5.26.0 2018-06-12 8

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

creates arequire frame inside aneval EXPR frame.) $subroutine may also be
(unknown) if this particular subroutine happens to have been deleted from the symbol table.
$hasargs is true if a new instance of@_was set up for the frame.$hints and$bitmask
contain pragmatic hints that the caller was compiled with.$hints corresponds to$ˆH , and
$bitmask corresponds to${ˆWARNING_BITS} . The $hints and $bitmask values are
subject to change between versions of Perl, and are not meant for external use.

$hinthash is a reference to a hash containing the value of%ˆH when the caller was compiled,
or undef if %ˆH was empty. Do not modify the values of this hash, as they are the actual values
stored in the optree.

Furthermore, when called from within theDB package in list context, and with an argument, caller
returns more detailed information: it sets the list variable@DB::args to be the arguments with
which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away beforecaller had a chance
to get the information. That means thatcaller(N) might not return information about the call
frame you expect it to, forN > 1. In particular,@DB::args might have information from the
previous timecaller was called.

Be aware that setting@DB::args is best effort, intended for debugging or generating backtraces,
and should not be relied upon. In particular, as @_contains aliases to the caller’s arguments, Perl
does not take a copy of @_, so @DB::args will contain modifications the subroutine makes to
@_or its contents, not the original values at call time.@DB::args , like @_, does not hold
explicit references to its elements, so under certain cases its elements may have become freed and
reallocated for other variables or temporary values. Finally, a side effect of the current
implementation is that the effects ofshift @_ can normally be undone (but notpop @_ or
other splicing,and not if a reference to@_has been taken, and subject to the caveat about
reallocated elements), so@DB::args is actually a hybrid of the current state and initial state of
@_. Buyer beware.

chdir EXPR
chdir FILEHANDLE
chdir DIRHANDLE
chdir

Changes the working directory toEXPR, if possible. If EXPR is omitted, changes to the directory
specified by$ENV{HOME}, if set; if not, changes to the directory specified by$ENV{LOGDIR} .
(Under VMS, the variable $ENV{'SYS$LOGIN'} is also checked, and used if it is set.)If
neither is set,chdir does nothing and fails. It returns true on success, false otherwise. See the
example underdie .

On systems that supportfchdir (2), you may pass a filehandle or directory handle as the argument.
On systems that don’t supportfchdir (2), passing handles raises an exception.

chmodLIST
Changes the permissions of a list of files.The first element of the list must be the numeric mode,
which should probably be an octal number, and which definitely shouldnot be a string of octal
digits: 0644 is okay, but "0644" is not. Returns the number of files successfully changed.See
alsooct if all you have is a string.

my $cnt = chmod 0755, "foo", "bar";
chmod 0755, @executables;
my $mode = "0644"; chmod $mode, "foo"; # ! !! sets mode to

−−w−−−−r−T
my $mode = "0644"; chmod oct($mode), "foo"; # this is better
my $mode = 0644; chmod $mode, "foo"; # t his is best

On systems that supportfchmod(2), you may pass filehandles among the files. On systems that
don’t support fchmod(2), passing filehandles raises an exception. Filehandlesmust be passed as
globs or glob references to be recognized; barewords are considered filenames.

perl v5.26.0 2018-06-12 9

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

open(my $fh, "<", "foo");
my $perm = (stat $fh)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbolicS_I* constants from theFcntl module:

use Fcntl qw(:mode);
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
I dentical to the chmod 0755 of the example above.

Portability issues: ‘‘chmod’’ in perlport.

chompVARIABLE
chomp(LIST)
chomp

This safer version ofchop removes any trailing string that corresponds to the current value of$/
(also known as$INPUT_RECORD_SEPARATORin the English module). Itreturns the total
number of characters removed from all its arguments. It’s often used to remove the newline from
the end of an input record when you’re worried that the final record may be missing its newline.
When in paragraph mode ($/ = ''), it removes all trailing newlines from the string. When in
slurp mode ($/ = undef) or fixed-length record mode ($/ is a reference to an integer or the
like; see perlvar), chomp won’t remove anything. If VARIABLE is omitted, it chomps$_ .
Example:

while (<>) {
chomp; # avoid \n on last field
my @array = split(/:/);
. ..

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys, resetting theeach iterator in
the process.

You can actually chomp anything that’s an lvalue, including an assignment:

chomp(my $cwd = `pwd`);
chomp(my $answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

Note that parentheses are necessary when you’re chomping anything that is not a simple variable.
This is becausechomp $cwd = `pwd`; is interpreted as(chomp $cwd) = `pwd`; ,
rather than aschomp($cwd = `pwd`) which you might expect. Similarly, chomp $a,
$b is interpreted aschomp($a), $b rather than aschomp($a, $b) .

chopVARIABLE
chop(LIST)
chop

Chops off the last character of a string and returns the character chopped.It is much more
efficient thans/.$//s because it neither scans nor copies the string.If VARIABLE is omitted,
chops$_ . If VARIABLE is a hash, it chops the hash’s values, but not its keys, resetting theeach
iterator in the process.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the lastchop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, −1) .

See alsochomp.

chownLIST
Changes the owner (and group) of a list of files.The first two elements of the list must be the
numericuid and gid, in that order. A value of −1 in either position is interpreted by most systems
to leave that value unchanged. Returns the number of files successfully changed.

perl v5.26.0 2018-06-12 10

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my $cnt = chown $uid, $gid, 'foo', 'bar';
chown $uid, $gid, @filenames;

On systems that supportfchown(2), you may pass filehandles among the files. On systems that
don’t support fchown(2), passing filehandles raises an exception. Filehandlesmust be passed as
globs or glob references to be recognized; barewords are considered filenames.

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";
chomp(my $user = <STDIN>);
print "Files: ";
chomp(my $pattern = <STDIN>);

my ($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

my @ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you’re the
superuser, although you should be able to change the group to any of your secondary groups.On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.On
POSIXsystems, you can detect this condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
my $can_chown_giveaway = ! sysconf(_PC_CHOWN_RESTRICTED);

Portability issues: ‘‘chown’’ in perlport.

chr NUMBER
chr Returns the character represented by thatNUMBER in the character set.For example,chr(65)

is "A" in eitherASCII or Unicode, and chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr (0xfffd)), except under the bytes
pragma, where the low eight bits of the value (truncated to an integer) are used.

If NUMBER is omitted, uses$_ .

For the reverse, useord .

Note that characters from 128 to 255 (inclusive) are by default internally not encoded asUTF−8
for backward compatibility reasons.

See perlunicode for more about Unicode.

chrootFILENAME
chroot

This function works like the system call by the same name: it makes the named directory the new
root directory for all further pathnames that begin with a/ by your process and all its children.(It
doesn’t change your current working directory, which is unaffected.) For security reasons, this
call is restricted to the superuser. If FILENAME is omitted, does achroot to $_ .

NOTE: It is good security practice to dochdir("/") (chdir to the root directory)
immediately after achroot .

Portability issues: ‘‘chroot’’ in perlport.

closeFILEHANDLE
close

Closes the file or pipe associated with the filehandle, flushes theIO buffers, and closes the system
file descriptor. Returns true if those operations succeed and if no error was reported by any PerlIO
layer. Closes the currently selected filehandle if the argument is omitted.

You don’t hav e to closeFILEHANDLE if you are immediately going to do anotheropen on it,
becauseopen closes it for you.(Seeopen .) However, an explicit close on an input file resets
the line counter ($.), while the implicit close done byopen does not.

perl v5.26.0 2018-06-12 11

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

If the filehandle came from a piped open,close returns false if one of the other syscalls involved
fails or if its program exits with non-zero status.If the only problem was that the program exited
non-zero,$! will be set to0. Closing a pipe also waits for the process executing on the pipe to
exit — in case you wish to look at the output of the pipe afterwards — andimplicitly puts the exit
status value of that command into$? and${ˆCHILD_ERROR_NATIVE} .

If there are multiple threads running,close on a filehandle from a piped open returns true
without waiting for the child process to terminate, if the filehandle is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end is done writing
results in the writer receiving aSIGPIPE. If the other end can’t handle that, be sure to read all the
data before closing the pipe.

Example:

open(OUTPUT, '|sort >foo') # pipe to sort
or die "Can't start sort: $!";

#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: " Exit status $? from sort";

open(INPUT, 'foo') # get sort's results
or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually the
real filehandle name or an autovivified handle.

closedirDIRHANDLE
Closes a directory opened byopendir and returns the success of that system call.

connectSOCKET,NAME
Attempts to connect to a remote socket, just like connect(2). Returnstrue if it succeeded, false
otherwise. NAME should be a packed address of the appropriate type for the socket. Seethe
examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

continueBLOCK
continue

When followed by aBLOCK, continue is actually a flow control statement rather than a
function. If there is acontinue BLOCK attached to aBLOCK (typically in a while or
foreach), it is always executed just before the conditional is about to be evaluated again, just
like the third part of afor loop in C. Thus it can be used to increment a loop variable, even when
the loop has been continued via thenext statement (which is similar to the Ccontinue
statement).

last , next , or redo may appear within acontinue block; last andredo behave as if they
had been executed within the main block.So will next , but since it will execute acontinue
block, it may be more entertaining.

while (EXPR) {
redo always comes here
do_something;

} c ontinue {
next always comes here
do_something_else;
t hen back the top to re−check EXPR

}
last always comes here

Omitting thecontinue section is equivalent to using an empty one, logically enough, sonext
goes directly back to check the condition at the top of the loop.

When there is noBLOCK, continue is a function that falls through the currentwhen or
default block instead of iterating a dynamically enclosingforeach or exiting a lexically
enclosinggiven . In Perl 5.14 and earlier, this form ofcontinue was only available when the
"switch" feature was enabled. See feature and ‘‘Switch Statements’’ in perlsyn for more

perl v5.26.0 2018-06-12 12

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

information.

cosEXPR
cos Returns the cosine ofEXPR(expressed in radians). IfEXPR is omitted, takes the cosine of$_ .

For the inverse cosine operation, you may use theMath::Trig::acos function, or use this
relation:

sub acos { atan2(sqrt(1 − $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT
Creates a digest string exactly like the crypt(3) function in the C library (assuming that you
actually have a version there that has not been extirpated as a potential munition).

crypt is a one-way hash function.The PLAINTEXT and SALT are turned into a short string,
called a digest, which is returned. The samePLAINTEXT andSALT will always return the same
string, but there is no (known) way to get the originalPLAINTEXT from the hash. Small changes
in thePLAINTEXT or SALT will result in large changes in the digest.

There is no decrypt function. This function isn’t all that useful for cryptography (for that, look for
Crypt modules on your nearbyCPAN mirror) and the name ‘‘crypt’’ is a bit of a misnomer. Instead
it is primarily used to check if two pieces of text are the same without having to transmit or store
the text itself. An example is checking if a correct password is given. Thedigest of the password
is stored, not the password itself. The user types in a password that iscrypt ’d with the same salt
as the stored digest. If the two digests match, the password is correct.

When verifying an existing digest string you should use the digest as the salt (like
crypt($plain, $digest) eq $digest). TheSALT used to create the digest is visible
as part of the digest.This ensurescrypt will hash the new string with the same salt as the digest.
This allows your code to work with the standardcrypt and with more exotic implementations.
In other words, assume nothing about the returned string itself nor about how many bytes ofSALT
may matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes from
the set[./0−9A−Za−z] , and only the first eight bytes ofPLAINTEXT mattered. Butalternative
hashing schemes (like MD5), higher level security schemes (like C2), and implementations on
non-Unix platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from the
set [./0−9A−Za−z] (like join '', ('.', '/', 0..9, 'A'..'Z',
'a'..'z')[rand 64, rand 64]). This set of characters is just a recommendation; the
characters allowed in the salt depend solely on your system’s crypt library, and Perl can’t restrict
what saltscrypt accepts.

Here’s an example that makes sure that whoever runs this program knows their password:

my $pwd = (getpwuid($<))[1];

system "stty −echo";
print "Password: ";
chomp(my $word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} e lse {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

Thecrypt function is unsuitable for hashing large quantities of data, not least of all because you
can’t get the information back. Look at the Digest module for more robust algorithms.

If usingcrypt on a Unicode string (whichpotentiallyhas characters with codepoints above 255),

perl v5.26.0 2018-06-12 13

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Perl tries to make sense of the situation by trying to downgrade (a copy of) the string back to an
eight-bit byte string before callingcrypt (on that copy). If that works, good.If not, crypt dies
with Wide character in crypt .

Portability issues: ‘‘crypt’’ in perlport.

dbmcloseHASH
[This function has been largely superseded by theuntie function.]

Breaks the binding between aDBM file and a hash.

Portability issues: ‘‘dbmclose’’ in perlport.

dbmopenHASH,DBNAME,MASK
[This function has been largely superseded by thetie function.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a hash.HASH is the
name of the hash.(Unlike normal open , the first argument isnot a filehandle, even though it
looks like one). DBNAME is the name of the database (without the.dir or .pagextension if any).
If the database does not exist, it is created with protection specified byMASK (as modified by the
umask). To prevent creation of the database if it doesn’t exist, you may specify aMODE of 0, and
the function will return a false value if it can’t find an existing database.If your system supports
only the olderDBM functions, you may make only onedbmopen call in your program. In older
versions of Perl, if your system had neitherDBM nor ndbm, callingdbmopen produced a fatal
error; it now falls back tosdbm(3).

If you don’t hav ewrite access to theDBM file, you can only read hash variables, not set them.If
you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside aneval to trap the error.

Note that functions such askeys andvalues may return huge lists when used on large DBM
files. You may prefer to use theeach function to iterate over largeDBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' = ', unpack('L',$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whichDBM library you use by loading that library before you calldbmopen:

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can't open netscape history file: $!";

Portability issues: ‘‘dbmopen’’ in perlport.

definedEXPR
defined

Returns a Boolean value telling whetherEXPRhas a value other than the undefined valueundef .
If EXPR is not present,$_ is checked.

Many operations returnundef to indicate failure, end of file, system error, uninitialized variable,
and other exceptional conditions. This function allows you to distinguishundef from other
values. (A simple Boolean test will not distinguish amongundef , zero, the empty string, and
"0" , which are all equally false.) Notethat sinceundef is a valid scalar, its presence doesn’t
necessarilyindicate an exceptional condition:pop returnsundef when its argument is an empty
array,or when the element to return happens to beundef .

You may also usedefined(&func) to check whether subroutinefunc has ever been defined.
The return value is unaffected by any forward declarations offunc . A subroutine that is not
defined may still be callable: its package may have an AUTOLOADmethod that makes it spring
into existence the first time that it is called; see perlsub.

perl v5.26.0 2018-06-12 14

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Use of defined on aggregates (hashes and arrays) is no longer supported. It used to report
whether memory for that aggregate had ever been allocated.You should instead use a simple test
for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { p rint "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key exists
in the hash. Useexists for the latter purpose.

Examples:

print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"

unless defined($value = readlink $sym);
sub foo { defined &$bar ? $bar−>(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overusedefined and are then surprised to discover that the number0
and"" (the zero-length string) are, in fact, defined values. For example, if you say

"ab" =˜ /a(.*)b/;

The pattern match succeeds and$1 is defined, although it matched ‘‘nothing’’. It didn’t really fail
to match anything. Rather, it matched something that happened to be zero characters long.This is
all very above-board and honest.When a function returns an undefined value, it’s an admission
that it couldn’t giv e you an honest answer. So you should usedefined only when questioning
the integrity of what you’re trying to do. At other times, a simple comparison to0 or "" is what
you want.

See alsoundef , exists , ref .

deleteEXPR
Given an expression that specifies an element or slice of a hash,delete deletes the specified
elements from that hash so thatexists on that element no longer returns true. Setting a hash
element to the undefined value does not remove its key, but deleting it does; seeexists .

In list context, returns the value or values deleted, or the last such element in scalar context. The
return list’s length always matches that of the argument list: deleting non-existent elements returns
the undefined value in their corresponding positions.

delete may also be used on arrays and array slices, but its behavior is less straightforward.
Although exists will return false for deleted entries, deleting array elements never changes
indices of existing values; useshift or splice for that. However, if any deleted elements fall
at the end of an array, the array’s size shrinks to the position of the highest element that still tests
true for exists , or to 0 if none do. In other words, an array won’t hav e trailing nonexistent
elements after a delete.

WARNING: Calling delete on array values is strongly discouraged.The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to
surprising behavior.

Deleting from%ENVmodifies the environment. Deletingfrom a hash tied to aDBM file deletes
the entry from theDBM file. Deleting from a tied hash or array may not necessarily return
anything; it depends on the implementation of thetied package’sDELETE method, which may
do whatever it pleases.

The delete local EXPR construct localizes the deletion to the current block at run time.
Until the block exits, elements locally deleted temporarily no longer exist. See‘‘ Localized
deletion of elements of composite types’’ in perlsub.

perl v5.26.0 2018-06-12 15

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my %hash = (foo => 11, bar => 22, baz => 33);
my $scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
my @array = delete @hash{qw(foo baz)}; # @array is (undef,33)

The following (inefficiently) deletes all the values of%HASHand@ARRAY:

foreach my $key (keys %HASH) {
delete $HASH{$key};

}

foreach my $index (0 .. $#ARRAY) {
delete $ARRAY[$index];

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both are slower than assigning the empty list or undefining%HASHor @ARRAY, which is the
customary way to empty out an aggregate:

%HASH = (); # c ompletely empty %HASH
undef %HASH; # f orget %HASH ever existed

@ARRAY = (); # c ompletely empty @ARRAY
undef @ARRAY; # f orget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an element or slice of an
aggregate:

delete $ref−>[$x][$y]{$key};
delete @{$ref−>[$x][$y]}{$key1, $key2, @morekeys};

delete $ref−>[$x][$y][$index];
delete @{$ref−>[$x][$y]}[$index1, $index2, @moreindices];

die LIST
die raises an exception. Insidean eval the error message is stuffed into$@and theeval is
terminated with the undefined value. If the exception is outside of all enclosingeval s, then the
uncaught exception printsLIST to STDERRand exits with a non-zero value. If you need to exit
the process with a specific exit code, seeexit .

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

If the last element ofLIST does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Note that the ‘‘input line number’’
(also known as ‘‘chunk’’) is subject to whatever notion of ‘‘line’ ’ happens to be currently in effect,
and is also available as the special variable$. . See ‘‘$/’’ in perlvar and ‘‘$.’’ i n perlvar.

Hint: sometimes appending", stopped" to your message will cause it to make better sense
when the string"at foo line 123" is appended. Suppose you are running script ‘‘canasta’’.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

If the output is empty and$@already contains a value (typically from a previouseval) that value

perl v5.26.0 2018-06-12 16

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

is reused after appending"\t...propagated" . This is useful for propagating exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If the output is empty and$@contains an object reference that has aPROPAGATEmethod, that
method will be called with additional file and line number parameters.The return value replaces
the value in$@; i.e., as if$@ = eval { $@−>PROPAGATE(_ _FILE_ _, _ _LINE_ _)
}; were called.

If $@is empty, then the string"Died" is used.

If an uncaught exception results in interpreter exit, the exit code is determined from the values of
$! and$? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # c hild exit status
exit 255; # l ast resort

As with exit , $? is set prior to unwinding the call stack; any DESTROYor ENDhandlers can
then alter this value, and thus Perl’s exit code.

The intent is to squeeze as much possible information about the likely cause into the limited space
of the system exit code.However, as $! is the value of C’s errno , which can be set by any
system call, this means that the value of the exit code used bydie can be non-predictable, so
should not be relied upon, other than to be non-zero.

You can also calldie with a reference argument, and if this is trapped within aneval , $@
contains that reference. This permits more elaborate exception handling using objects that
maintain arbitrary state about the exception. Sucha scheme is sometimes preferable to matching
particular string values of$@with regular expressions. Because$@is a global variable andeval
may be used within object implementations, be careful that analyzing the error object doesn’t
replace the reference in the global variable. It’s easiest to make a local copy of the reference
before any manipulations. Here’s an example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception−>new(FOO => "bar") };
if (my $ev_err = $@) {

if (blessed($ev_err)
&& $ev_err−>isa("Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because Perl stringifies uncaught exception messages before display, you’ll probably want to
overload stringification operations on exception objects. See overload for details about that.

You can arrange for a callback to be run just before thedie does its deed, by setting the
$SIG{_ _DIE_ _} hook. Theassociated handler is called with the error text and can change the
error message, if it sees fit, by callingdie again. See‘‘ %SIG’’ in perlvar for details on setting
%SIGentries, andeval for some examples. Althoughthis feature was to be run only right before
your program was to exit, this is not currently so: the$SIG{_ _DIE_ _} hook is currently called
ev en insideeval ed blocks/strings! If one wants the hook to do nothing in such situations, put

die @_ if $ˆS;

as the first line of the handler (see ‘‘$ˆS’’ in perlvar). Becausethis promotes strange action at a
distance, this counterintuitive behavior may be fixed in a future release.

See alsoexit , warn , and the Carp module.

perl v5.26.0 2018-06-12 17

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

do BLOCK
Not really a function. Returns the value of the last command in the sequence of commands
indicated byBLOCK. When modified by thewhile or until loop modifier, executes the
BLOCK once before testing the loop condition. (On other statements the loop modifiers test the
conditional first.)

do BLOCK doesnot count as a loop, so the loop control statementsnext , last , or redo
cannot be used to leave or restart the block. See perlsyn for alternative strategies.

do EXPR
Uses the value ofEXPRas a filename and executes the contents of the file as a Perl script:

l oad the exact specified file (./ and ../ special−cased)
do '/foo/stat.pl';
do './stat.pl';
do '../foo/stat.pl';

s earch for the named file within @INC
do 'stat.pl';
do 'foo/stat.pl';

do './stat.pl' is largely like

eval `cat stat.pl`;

except that it’s more concise, runs no external processes, and keeps track of the current filename
for error messages. It also differs in that code evaluated withdo FILE cannot see lexicals in the
enclosing scope;eval STRING does. It’s the same, however, in that it does reparse the file
ev ery time you call it, so you probably don’t want to do this inside a loop.

Usingdo with a relative path (except for./ and../), like

do 'foo/stat.pl';

will search the@INCdirectories, and update%INC if the file is found. See ‘‘@INC’’ in perlvar
and ‘‘%INC’’ in perlvar for these variables. In particular, note that whilst historically@INC
contained ’.’ (the current directory) making these two cases equivalent, that is no longer
necessarily the case, as ’.’ is not included in@INCby default in perl versions 5.26.0 onwards.
Instead, perl will now warn:

do "stat.pl" failed, '.' is no longer in @INC;
did you mean do "./stat.pl"?

If do can read the file but cannot compile it, it returnsundef and sets an error message in$@. If
do cannot read the file, it returns undef and sets$! to the error. Always check$@first, as
compilation could fail in a way that also sets$! . If the file is successfully compiled,do returns
the value of the last expression evaluated.

Inclusion of library modules is better done with theuse andrequire operators, which also do
automatic error checking and raise an exception if there’s a problem.

You might like to usedo to read in a program configuration file. Manual error checking can be
done this way:

Read in config files: system first, then user.
Beware of using relative pathnames here.
for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;

}
}

perl v5.26.0 2018-06-12 18

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

dumpLABEL
dumpEXPR
dump

This function causes an immediate core dump.See also the−u command-line switch in perlrun,
which does the same thing.Primarily this is so that you can use theundump program (not
supplied) to turn your core dump into an executable binary after having initialized all your
variables at the beginning of the program. When the new binary is executed it will begin by
executing agoto LABEL (with all the restrictions thatgoto suffers). Thinkof it as a goto with
an intervening core dump and reincarnation.If LABEL is omitted, restarts the program from the
top. Thedump EXPR form, available starting in Perl 5.18.0, allows a name to be computed at
run time, being otherwise identical todump LABEL .

WARNING : Any files opened at the time of the dump willnotbe open any more when the program
is reincarnated, with possible resulting confusion by Perl.

This function is now largely obsolete, mostly because it’s very hard to convert a core file into an
executable. That’s why you should now inv oke it as CORE::dump() if you don’t want to be
warned against a possible typo.

Unlike most named operators, this has the same precedence as assignment.It is also exempt from
the looks-like-a-function rule, sodump ("foo")."bar" will cause ‘‘bar’’ to be part of the
argument todump.

Portability issues: ‘‘dump’’ in perlport.

eachHASH
eachARRAY

When called on a hash in list context, returns a 2−element list consisting of the key and value for
the next element of a hash. In Perl 5.12 and later only, it will also return the index and value for
the next element of an array so that you can iterate over it; older Perls consider this a syntax error.
When called in scalar context, returns only the key (not the value) in a hash, or the index in an
array.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash.Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned byeach or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely onkeys , values andeach to
repeatedly return the same order as each other. See ‘‘A lgorithmic Complexity Attacks’’ in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of
Perl.

After each has returned all entries from the hash or array, the next call toeach returns the empty
list in list context andundef in scalar context; the next call following that one restarts iteration.
Each hash or array has its own internal iterator, accessed byeach , keys , and values . The
iterator is implicitly reset wheneach has reached the end as just described; it can be explicitly
reset by callingkeys or values on the hash or array. If you add or delete a hash’s elements
while iterating over it, the effect on the iterator is unspecified; for example, entries may be skipped
or duplicated— so don’t do that. Exception:It is always safe to delete the item most recently
returned byeach , so the following code works properly:

while (my ($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe

}

Tied hashes may have a different ordering behaviour to perl’s hash implementation.

This prints out your environment like theprintenv(1) program, but in a different order:

perl v5.26.0 2018-06-12 19

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

while (my ($key,$value) = each %ENV) {
print "$key=$value\n";

}

Starting with Perl 5.14, an experimental feature allowed each to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

As of Perl 5.18 you can use a bareeach in awhile loop, which will set$_ on every iteration.

while (each %ENV) {
print "$_=$ENV{$_}\n";

}

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays
use 5.018; # so e ach assigns to $_ in a lone while test

See alsokeys , values , andsort .

eof FILEHANDLE
eof ()
eof Returns 1 if the next read onFILEHANDLE will return end of fileor if FILEHANDLE is not open.

FILEHANDLE may be an expression whose value gives the real filehandle.(Note that this function
actually reads a character and thenungetc s it, so isn’t useful in an interactive context.) Do not
read from a terminal file (or calleof(FILEHANDLE) on it) after end-of-file is reached.File
types such as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read.Using eof() with empty parentheses is
different. It refers to the pseudo file formed from the files listed on the command line and
accessed via the<> operator. Since <> isn’t explicitly opened, as a normal filehandle is, an
eof() before <> has been used will cause@ARGVto be examined to determine if input is
available. Similarly, an eof() after<> has returned end-of-file will assume you are processing
another@ARGVlist, and if you haven’t set @ARGV, will read input fromSTDIN; see ‘‘I/O
Operators’’ in perlop.

In awhile (<>) loop,eof or eof(ARGV) can be used to detect the end of each file, whereas
eof() will detect the end of the very last file only. Examples:

r eset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # s kip comments
print "$.\t$_";

} c ontinue {
close ARGV if eof; # Not eof()!

}

i nsert dashes just before last line of last file
while (<>) {

if (eof()) { # c heck for end of last file
print "−−−−−−−−−−−−−−\n";

}
print;
last if eof(); # needed if we're reading from a terminal

}

Practical hint: you almost never need to useeof in Perl, because the input operators typically
returnundef when they run out of data or encounter an error.

eval EXPR
eval BLOCK

perl v5.26.0 2018-06-12 20

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

eval
eval in all its forms is used to execute a little Perl program, trapping any errors encountered so
they don’t crash the calling program.

Plain eval with no argument is justeval EXPR , where the expression is understood to be
contained in$_ . Thus there are only two realeval forms; the one with anEXPR is often called
‘‘ string eval’ ’. In a string eval, the value of the expression (which is itself determined within scalar
context) is first parsed, and if there were no errors, executed as a block within the lexical context
of the current Perl program. This form is typically used to delay parsing and subsequent execution
of the text ofEXPRuntil run time. Note that the value is parsed every time theeval executes.

The other form is called ‘‘block eval’ ’. It is less general than string eval, but the code within the
BLOCK is parsed only once (at the same time the code surrounding theeval itself was parsed)
and executed within the context of the current Perl program. This form is typically used to trap
exceptions more efficiently than the first, while also providing the benefit of checking the code
within BLOCK at compile time. BLOCK is parsed and compiled just once. Since errors are
trapped, it often is used to check if a given feature is available.

In both forms, the value returned is the value of the last expression evaluated inside the mini-
program; a return statement may also be used, just as with subroutines. The expression providing
the return value is evaluated in void, scalar, or list context, depending on the context of theeval
itself. Seewantarray for more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or adie statement is executed,eval returnsundef in
scalar context, or an empty list in list context, and$@is set to the error message. (Prior to 5.16, a
bug causedundef to be returned in list context for syntax errors, but not for runtime errors.) If
there was no error, $@is set to the empty string.A control flow operator like last or goto can
bypass the setting of$@. Bew are that usingeval neither silences Perl from printing warnings to
STDERR,nor does it stuff the text of warning messages into$@. To do either of those, you have to
use the$SIG{_ _WARN_ _} facility, or turn off warnings inside theBLOCK or EXPR using
noÂwarningsÂ'all' . Seewarn , perlvar, and warnings.

Note that, becauseeval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such assocket or symlink) is implemented. Itis also Perl’s exception-
trapping mechanism, where thedie operator is used to raise exceptions.

Before Perl 5.14, the assignment to$@occurred before restoration of localized variables, which
means that for your code to run on older versions, a temporary is required if you want to mask
some, but not all errors:

alter $@ on nefarious repugnancy only
{

my $e;
{

local $@; # protect existing $@
eval { test_repugnancy() };
$@ =˜ / nefarious/ and die $@; # Perl 5.14 and higher only
$@ =˜ /nefarious/ and $e = $@;

}
die $e if defined $e

}

There are some different considerations for each form:

String eval
Since the return value ofEXPR is executed as a block within the lexical context of the current
Perl program, any outer lexical variables are visible to it, and any package variable settings or
subroutine and format definitions remain afterwards.

Under the‘‘unicode_eval’’ feature
If this feature is enabled (which is the default under ause 5.16 or higher
declaration),EXPR is considered to be in the same encoding as the surrounding
program. Thusif useÂutf8 is in effect, the string will be treated as beingUTF−8
encoded. Otherwise,the string is considered to be a sequence of independent bytes.

perl v5.26.0 2018-06-12 21

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Bytes that correspond to ASCII-range code points will have their normal meanings for
operators in the string. The treatment of the other bytes depends on if the
'unicode_strings" feature is in effect.

In a plaineval without anEXPR argument, being inuseÂutf8 or not is irrelevant;
the UTF−8ness of$_ itself determines the behavior.

Any useÂutf8 or noÂutf8 declarations within the string have no effect, and source
filters are forbidden.(unicode_strings , howev er, can appear within the string.)
See also theevalbytes operator, which works properly with source filters.

Variables defined outside theeval and used inside it retain their original UTF−8ness.
Everything inside the string follows the normal rules for a Perl program with the given
state ofuseÂutf8 .

Outside the‘‘unicode_eval’’ feature
In this case, the behavior is problematic and is not so easily described. Here are two
bugs that cannot easily be fixed without breaking existing programs:

• It can lose track of whether something should be encoded asUTF−8 or not.

• Source filters activated withineval leak out into whichever file scope is currently
being compiled.To giv e an example with theCPAN module Semi::Semicolons:

BEGIN { eval "use Semi::Semicolons; # not filtered" }
f iltered here!

evalbytes fixes that to work the way one would expect:

use feature "evalbytes";
BEGIN { evalbytes "use Semi::Semicolons; # filtered" }
not filtered

Problems can arise if the string expands a scalar containing a floating point number. That
scalar can expand to letters, such as"NaN" or "Infinity" ; or, within the scope of ause
locale , the decimal point character may be something other than a dot (such as a comma).
None of these are likely to parse as you are likely expecting.

You should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2

eval '$x'; # CASE 3
eval { $x }; # CASE 4

eval "\$$x++"; # CASE 5
$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable $x .
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
'$x' , which does nothing but return the value of$x . (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run-time.)
Case 5 is a place where normally youwould like to use double quotes, except that in this
particular situation, you can just use symbolic references instead, as in case 6.

An eval '' executed within a subroutine defined in theDBpackage doesn’t see the usual
surrounding lexical scope, but rather the scope of the first non-DB piece of code that called it.
You don’t normally need to worry about this unless you are writing a Perl debugger.

The final semicolon, if any, may be omitted from the value ofEXPR.

Block eval
If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still
returned in$@. Examples:

perl v5.26.0 2018-06-12 22

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

make divide−by−zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

s ame thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

a c ompile−time error
eval { $answer = }; # WRONG

a r un−time error
eval '$answer ='; # s ets $@

If you want to trap errors when loading anXS module, some problems with the binary
interface (such as Perl version skew) may be fatal even with eval unless
$ENV{PERL_DL_NONLAZY}is set. See perlrun.

Using theeval {} form as an exception trap in libraries does have some issues. Due to the
current arguably broken state of_ _DIE_ _ hooks, you may wish not to trigger any
_ _DIE_ _ hooks that user code may have installed. You can use thelocal
$SIG{_ _DIE_ _} construct for this purpose, as this example shows:

a private exception trap for divide−by−zero
eval { local $SIG{'_ _DIE_ _'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that_ _DIE_ _ hooks can calldie again, which has the
effect of changing their error messages:

_ _DIE_ _ hooks may modify error messages
{

local $SIG{'_ _DIE_ _'} =
sub { (my $x = $_[0]) =˜ s/foo/bar/g; die $x };

eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may be fixed in a
future release.

eval BLOCK doesnot count as a loop, so the loop control statementsnext , last , or
redo cannot be used to leave or restart the block.

The final semicolon, if any, may be omitted from within theBLOCK.

evalbytesEXPR
evalbytes

This function is similar to a string eval, except it always parses its argument (or$_ if EXPR is
omitted) as a string of independent bytes.

If called whenuseÂutf8 is in effect, the string will be assumed to be encoded inUTF−8, and
evalbytes will make a temporary copy to work from, downgraded to non−UTF−8. If this is
not possible (because one or more characters in it requireUTF−8), theevalbytes will fail with
the error stored in$@.

Bytes that correspond to ASCII-range code points will have their normal meanings for operators
in the string. The treatment of the other bytes depends on if the'unicode_strings" feature
is in effect.

Of course, variables that areUTF−8 and are referred to in the string retain that:

my $a = "\x{100}";
evalbytes 'print ord $a, "\n"';

prints

perl v5.26.0 2018-06-12 23

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

256

and$@is empty.

Source filters activated within the evaluated code apply to the code itself.

evalbytes is available starting in Perl v5.16.To access it, you must sayCORE::evalbytes ,
but you can omit theCORE:: if the "evalbytes" feature is enabled. This is enabled
automatically with ause v5.16 (or higher) declaration in the current scope.

exec LIST
exec PROGRAM LIST

Theexec function executes a system commandand never returns; usesystem instead ofexec
if you want it to return.It fails and returns false only if the command does not exist and it is
executed directly instead of via your system’s command shell (see below).

Since it’s a common mistake to useexec instead ofsystem , Perl warns you ifexec is called in
void context and if there is a following statement that isn’t die , warn , or exit (if warnings are
enabled — but you always do that, right?).If you really want to follow an exec with some other
statement, you can use one of these styles to avoid the warning:

exec ('foo') or print STDERR "couldn't exec foo: $!";
{ e xec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument inLIST, this callsexecvp(3) with the arguments inLIST. If
there is only one element inLIST, the argument is checked for shell metacharacters, and if there
are any, the entire argument is passed to the system’s command shell for parsing (this is/bin/sh
−c on Unix platforms, but varies on other platforms).If there are no shell metacharacters in the
argument, it is split into words and passed directly toexecvp , which is more efficient.
Examples:

exec '/bin/echo', 'Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don’t really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
‘‘ indirect object’’ (without a comma) in front of theLIST, as inexec PROGRAM LIST . (This
always forces interpretation of theLIST as a multivalued list, even if there is only a single scalar in
the list.) Example:

my $shell = '/bin/csh';
exec $shell '−sh'; # pretend it's a login shell

or, more directly,

exec {'/bin/csh'} '−sh'; # pretend it's a login shell

When the arguments get executed via the system shell, results are subject to its quirks and
capabilities. See‘‘‘ STRING‘’’ in perlop for details.

Using an indirect object withexec or system is also more secure. This usage (which also
works fine withsystem) forces interpretation of the arguments as a multivalued list, even if the
list had just one argument. Thatway you’re safe from the shell expanding wildcards or splitting
up words with whitespace in them.

my @args = ("echo surprise");

exec @args; # s ubject to shell escapes
if @ args == 1

exec { $args[0] } @args; # s afe even with one−arg list

The first version, the one without the indirect object, ran theecho program, passing it
"surprise" an argument. Thesecond version didn’t; it tried to run a program named‘‘ echo
surprise’’, didn’t find it, and set$? to a non-zero value indicating failure.

On Windows, only theexec PROGRAM LIST indirect object syntax will reliably avoid using
the shell;exec LIST , even with more than one element, will fall back to the shell if the first

perl v5.26.0 2018-06-12 24

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

spawn fails.

Perl attempts to flush all files opened for output before the exec, but this may not be supported on
some platforms (see perlport).To be safe, you may need to set$| ($AUTOFLUSHin English) or
call theautoflush method ofIO::Handle on any open handles to avoid lost output.

Note thatexec will not call your ENDblocks, nor will it invoke DESTROYmethods on your
objects.

Portability issues: ‘‘exec’’ in perlport.

existsEXPR
Given an expression that specifies an element of a hash, returns true if the specified element in the
hash has ever been initialized, even if the corresponding value is undefined.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};

exists may also be called on array elements, but its behavior is much less obvious and is strongly
tied to the use ofdelete on arrays.

WARNING: Calling exists on array values is strongly discouraged.The notion of deleting or
checking the existence of Perl array elements is not conceptually coherent, and can lead to
surprising behavior.

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined and defined only if it exists, but the reverse
doesn’t necessarily hold true.

Given an expression that specifies the name of a subroutine, returns true if the specified subroutine
has ever been declared, even if it is undefined. Mentioninga subroutine name for exists or defined
does not count as declaring it. Note that a subroutine that does not exist may still be callable: its
package may have an AUTOLOADmethod that makes it spring into existence the first time that it is
called; see perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that theEXPR can be arbitrarily complicated as long as the final operation is a hash or array
key lookup or subroutine name:

if (exists $ref−>{A}−>{B}−>{$key}) { }
if (exists $hash{A}{B}{$key}) { }

if (exists $ref−>{A}−>{B}−>[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }

if (exists &{$ref−>{A}{B}{$key}}) { }

Although the most deeply nested array or hash element will not spring into existence just because
its existence was tested, any intervening ones will. Thus $ref−>{"A"} and
$ref−>{"A"}−>{"B"} will spring into existence due to the existence test for the$key
element above. This happens anywhere the arrow operator is used, including even here:

undef $ref;
if (exists $ref−>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first— or even second — glanceappear to be
an lvalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argument toexists is an error.

perl v5.26.0 2018-06-12 25

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
exit EvaluatesEXPRand exits immediately with that value. Example:

my $ans = <STDIN>;
exit 0 if $ans =˜ /ˆ[Xx]/;

See alsodie . If EXPR is omitted, exits with0 status. Theonly universally recognized values for
EXPRare0 for success and1 for error; other values are subject to interpretation depending on the
environment in which the Perl program is running.For example, exiting 69 (EX_UNAVA ILABLE)
from a sendmailincoming-mail filter will cause the mailer to return the item undelivered, but
that’s not true everywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might want to trap
whatever error happened. Usedie instead, which can be trapped by aneval .

Theexit function does not always exit immediately. It calls any definedENDroutines first, but
theseENDroutines may not themselves abort the exit. Likewise any object destructors that need
to be called are called before the real exit. ENDroutines and destructors can change the exit status
by modifying$? . If this is a problem, you can callPOSIX::_exit($status) to avoid END
and destructor processing. See perlmod for details.

Portability issues: ‘‘exit’’ in perlport.

exp EXPR
exp Returnse (the natural logarithm base) to the power ofEXPR. If EXPR is omitted, gives exp($_) .

fc EXPR
fc Returns the casefolded version ofEXPR. This is the internal function implementing the\F escape

in double-quoted strings.

Casefolding is the process of mapping strings to a form where case differences are erased;
comparing two strings in their casefolded form is effectively a way of asking if two strings are
equal, regardless of case.

Roughly, if you ever found yourself writing this

lc($this) eq lc($that) # Wrong!
or

uc($this) eq uc($that) # Also wrong!
or

$this =˜ /ˆ\Q$that\E\z/i # Right!

Now you can write

fc($this) eq fc($that)

And get the correct results.

Perl only implements the full form of casefolding, but you can access the simple folds using
"casefold()" in Unicode::UCD and "prop_invmap()" in Unicode::UCD. For further information
on casefolding, refer to the Unicode Standard, specifically sections 3.13Default Case
Operations , 4.2 Case−Normative , and 5.18 Case Mappings , available at
<http://www.unicode.org/versions/latest/>, as well as the Case Charts available at
<http://www.unicode.org/charts/case/>.

If EXPR is omitted, uses$_ .

This function behaves the same way under various pragmas, such as within
"useÂfeatureÂ'unicode_strings" , as lc does, with the single exception of fc of
LATIN CAPITAL LETTER SHARP S(U+1E9E) within the scope ofuseÂlocale . The foldcase of
this character would normally be"ss" , but as explained in thelc section, case changes that
cross the 255/256 boundary are problematic under locales, and are hence prohibited.Therefore,
this function under locale returns instead the string"\x{17F}\x{17F}" , which is theLATIN
SMALL LETTER LONG S. Since that character itself folds to"s" , the string of two of them

perl v5.26.0 2018-06-12 26

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

together should be equivalent to a single U+1E9E when foldcased.

While the Unicode Standard defines two additional forms of casefolding, one for Turkic languages
and one that never maps one character into multiple characters, these are not provided by the Perl
core. However, the CPAN module Unicode::Casing may be used to provide an
implementation.

fc is available only if the"fc" feature is enabled or if it is prefixed withCORE:: . The "fc"
feature is enabled automatically with ause v5.16 (or higher) declaration in the current scope.

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thefcntl (2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions.Argument processing and value returned work just like
ioctl below. For example:

use Fcntl;
my $flags = fcntl($filehandle, F_GETFL, 0)

or die "Can't fcntl F_GETFL: $!";

You don’t hav e to check fordefined on the return fromfcntl . Like ioctl , it maps a0
return from the system call into"0 but true" in Perl. This string is true in boolean context
and 0 in numeric context. It is also exempt from the normalArgument "..." isn't
numeric warnings on improper numeric conversions.

Note thatfcntl raises an exception if used on a machine that doesn’t implementfcntl (2). See
the Fcntl module or yourfcntl (2) manpage to learn what functions are available on your system.

Here’s an example of setting a filehandle named$REMOTEto be non-blocking at the system level.
You’ll have to negotiate$| on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

my $flags = fcntl($REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";

fcntl($REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

Portability issues: ‘‘fcntl’’ in perlport.

_ _FILE_ _
A special token that returns the name of the file in which it occurs.

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. If there is no
real file descriptor at theOS level, as can happen with filehandles connected to memory objects via
open with a reference for the third argument, −1 is returned.

This is mainly useful for constructing bitmaps forselect and low-level POSIX tty-handling
operations. IfFILEHANDLE is an expression, the value is taken as an indirect filehandle, generally
its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

if (fileno($this) != −1 && fileno($this) == fileno($that)) {
print "\$this and \$that are dups\n";

} e lsif (fileno($this) != −1 && fileno($that) != −1) {
print "\$this and \$that have different " .

"underlying file descriptors\n";
} e lse {

print "At least one of \$this and \$that does " .
"not have a real file descriptor\n";

}

perl v5.26.0 2018-06-12 27

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

The behavior offileno on a directory handle depends on the operating system. On a system
with dirfd (3) or similar, fileno on a directory handle returns the underlying file descriptor
associated with the handle; on systems with no such support, it returns the undefined value, and
sets$! (errno).

flock FILEHANDLE,OPERATION
Calls flock(2), or an emulation of it, onFILEHANDLE. Returns true for success, false on failure.
Produces a fatal error if used on a machine that doesn’t implementflock(2), fcntl (2) locking, or
lockf(3). flock is Perl’s portable file-locking interface, although it locks entire files only, not
records.

Tw o potentially non-obvious but traditionalflock semantics are that it waits indefinitely until
the lock is granted, and that its locks aremerely advisory. Such discretionary locks are more
flexible, but offer fewer guarantees. This means that programs that do not also useflock may
modify files locked with flock . See perlport, your port’s specific documentation, and your
system-specific local manpages for details.It’s best to assume traditional behavior if you’re
writing portable programs. (But if you’re not, you should as always feel perfectly free to write for
your own system’s idiosyncrasies (sometimes called ‘‘features’’). Slavish adherence to portability
concerns shouldn’t get in the way of your getting your job done.)

OPERATION is one ofLOCK_SH, LOCK_EX,or LOCK_UN, possibly combined withLOCK_NB.
These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic names if you
import them from the Fcntl module, either individually, or as a group using the:flock tag.
LOCK_SH requests a shared lock,LOCK_EX requests an exclusive lock, andLOCK_UN releases a
previously requested lock.If LOCK_NB is bitwise-or’ed withLOCK_SH or LOCK_EX, then
flock returns immediately rather than blocking waiting for the lock; check the return status to
see if you got it.

To avoid the possibility of miscoordination, Perl now flushesFILEHANDLE before locking or
unlocking it.

Note that the emulation built withlockf(3) doesn’t provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics thatlockf(3) implements.Most
if not all systems implementlockf(3) in terms of fcntl (2) locking, though, so the differing
semantics shouldn’t bite too many people.

Note that thefcntl (2) emulation offlock(3) requires thatFILEHANDLE be open with read intent to
useLOCK_SHand requires that it be open with write intent to useLOCK_EX.

Note also that some versions offlock cannot lock things over the network; you would need to
use the more system-specificfcntl for that. If you like you can force Perl to ignore your
system’sflock(2) function, and so provide its own fcntl (2)−based emulation, by passing the
switch−Ud_flock to theConfigureprogram when you configure and build a new Perl.

Here’s a mailbox appender forBSD systems.

i mport LOCK_* and SEEK_END constants
use Fcntl qw(:flock SEEK_END);

sub lock {
my ($fh) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox − $!\n";

and, in case someone appended while we were waiting...
seek($fh, 0, SEEK_END) or die "Cannot seek − $!\n";

}

sub unlock {
my ($fh) = @_;
flock($fh, LOCK_UN) or die "Cannot unlock mailbox − $!\n";

}

open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")

perl v5.26.0 2018-06-12 28

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

or die "Can't open mailbox: $!";

lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);

On systems that support a realflock(2), locks are inherited acrossfork calls, whereas those that
must resort to the more capriciousfcntl (2) function lose their locks, making it seriously harder to
write servers.

See also DB_File for otherflock examples.

Portability issues: ‘‘flock’’ in perlport.

fork
Does afork (2) system call to create a new process running the same program at the same point.It
returns the child pid to the parent process,0 to the child process, orundef if the fork is
unsuccessful. Filedescriptors (and sometimes locks on those descriptors) are shared, while
ev erything else is copied. On most systems supportingfork (2), great care has gone into making it
extremely efficient (for example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking over the last few decades.

Perl attempts to flush all files opened for output before forking the child process, but this may not
be supported on some platforms (see perlport).To be safe, you may need to set$|
($AUTOFLUSHin English) or call theautoflush method of IO::Handle on any open
handles to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies. On some
systems, you can avoid this by setting$SIG{CHLD} to "IGNORE" . See also perlipc for more
examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are
actually connected by a pipe or socket, even if you exit, then the remote server (such as, say, aCGI
script or a backgrounded job launched from a remote shell) won’t think you’re done.You should
reopen those to/dev/nullif it’ s any issue.

On some platforms such as Windows, where thefork (2) system call is not available, Perl can be
built to emulatefork in the Perl interpreter. The emulation is designed, at the level of the Perl
program, to be as compatible as possible with the ‘‘Unix’’ fork (2). However it has limitations that
have to be considered in code intended to be portable. See perlfork for more details.

Portability issues: ‘‘fork’’ in perlport.

format
Declare a picture format for use by thewrite function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>

$str, $%, '$' . int($num)
.

$str = "widget";
$num = $cost/$quantity;
$˜ = 'Something';
write;

See perlform for many details and examples.

formline PICTURE,LIST
This is an internal function used byformat s, though you may call it, too. It formats (see
perlform) a list of values according to the contents ofPICTURE,placing the output into the format
output accumulator, $ˆA (or $ACCUMULATORin English). Eventually, when awrite is done,
the contents of$ˆA are written to some filehandle.You could also read$ˆA and then set$ˆA
back to "" . Note that a format typically does oneformline per line of form, but the
formline function itself doesn’t care how many newlines are embedded in thePICTURE. This

perl v5.26.0 2018-06-12 29

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

means that thẽ and˜˜ tokens treat the entirePICTUREas a single line.You may therefore need
to use multiple formlines to implement a single record format, just like theformat compiler.

Be careful if you put double quotes around the picture, because an@character may be taken to
mean the beginning of an array name.formline always returns true. See perlform for other
examples.

If you are trying to use this instead ofwrite to capture the output, you may find it easier to open
a filehandle to a scalar (open my $fh, ">", \$output) and write to that instead.

getcFILEHANDLE
getc

Returns the next character from the input file attached toFILEHANDLE, or the undefined value at
end of file or if there was an error (in the latter case$! is set). If FILEHANDLE is omitted, reads
from STDIN. This is not particularly efficient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit enter. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", '−icanon', 'eol', "\001";
}

my $key = getc(STDIN);

if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system 'stty', 'icanon', 'eol', 'ˆ@'; # ASCII NUL
}
print "\n";

Determination of whether$BSD_STYLEshould be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purportingPOSIX
compliance. Seealso theTerm::ReadKey module onCPAN.

getlogin
This implements the C library function of the same name, which on most systems returns the
current login from/etc/utmp, if any. If it returns the empty string, usegetpwuid .

my $login = getlogin || getpwuid($<) || "Kilroy";

Do not considergetlogin for authentication: it is not as secure asgetpwuid .

Portability issues: ‘‘getlogin’’ in perlport.

getpeernameSOCKET
Returns the packed sockaddr address of the other end of theSOCKETconnection.

use Socket;
my $hersockaddr = getpeername($sock);
my ($port, $iaddr) = sockaddr_in($hersockaddr);
my $herhostname = gethostbyaddr($iaddr, AF_INET);
my $herstraddr = i net_ntoa($iaddr);

getpgrpPID
Returns the current process group for the specifiedPID. Use aPID of 0 to get the current process
group for the current process.Will raise an exception if used on a machine that doesn’t implement
getpgrp(2). If PID is omitted, returns the process group of the current process.Note that the
POSIXversion ofgetpgrp does not accept aPID argument, so onlyPID==0 is truly portable.

Portability issues: ‘‘getpgrp’’ in perlport.

perl v5.26.0 2018-06-12 30

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

getppid
Returns the process id of the parent process.

Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work around non-POSIX thread
semantics the minority of Linux systems (and Debian GNU/kFreeBSD systems) that used
LinuxThreads, this emulation has since been removed. Seethe documentation for $$ for details.

Portability issues: ‘‘getppid’’ in perlport.

getpriorityWHICH,WHO
Returns the current priority for a process, a process group, or a user. (Seegetpriority (2).) Will
raise a fatal exception if used on a machine that doesn’t implementgetpriority (2).

Portability issues: ‘‘getpriority’’ in perlport.

getpwnamNAME
getgrnamNAME
gethostbynameNAME
getnetbynameNAME
getprotobynameNAME
getpwuidUID
getgrgidGID
getservbynameNAME,PROT O
gethostbyaddrADDR,ADDRTYPE
getnetbyaddrADDR,ADDRTYPE
getprotobynumberNUMBER
getservbyportPORT,PROT O
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostentSTAY OPEN
setnetentSTAY OPEN
setprotoentSTAY OPEN
setserventSTAY OPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines are the same as their counterparts in the system C library. In list context, the return
values from the various get routines are as follows:

0 1 2 3 4
my ($name, $passwd, $gid, $members) = getgr*
my ($name, $aliases, $addrtype, $net) = g etnet*
my ($name, $aliases, $port, $proto) = getserv*
my ($name, $aliases, $proto) = g etproto*
my ($name, $aliases, $addrtype, $length, @addrs) = g ethost*
my ($name, $passwd, $uid, $gid, $quota,

$comment, $gcos, $dir, $shell, $expire) = getpw*
5 6 7 8 9

(If the entry doesn’t exist, the return value is a single meaningless true value.)

The exact meaning of the$gcos field varies but it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the user. Bew are, however, that in
many system users are able to change this information and therefore it cannot be trusted and

perl v5.26.0 2018-06-12 31

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

therefore the$gcos is tainted (see perlsec).The $passwd and $shell , user’s encrypted
password and login shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you
get the other thing, whatever it is. (If the entry doesn’t exist you get the undefined value.) For
example:

my $uid = getpwnam($name);
my $name = getpwuid($num);
my $name = getpwent();
my $gid = getgrnam($name);
my $name = getgrgid($num);
my $name = getgrent();
etc.

In getpw*() the fields $quota , $comment , and $expire are special in that they are
unsupported on many systems. If the $quota is unsupported, it is an empty scalar. If it i s
supported, it usually encodes the disk quota. If the$comment field is unsupported, it is an empty
scalar. If it is supported it usually encodes some administrative comment about the user. In some
systems the$quota field may be$change or $age , fields that have to do with password aging.
In some systems the$comment field may be$class . The$expire field, if present, encodes
the expiration period of the account or the password. For the availability and the exact meaning of
these fields in your system, please consultgetpwnam(3) and your system’s pwd.hfile. You can
also find out from within Perl what your$quota and$comment fields mean and whether you
have the $expire field by using theConfig module and the valuesd_pwquota , d_pwage ,
d_pwchange , d_pwcomment , and d_pwexpire . Shadow password files are supported only
if your vendor has implemented them in the intuitive fashion that calling the regular C library
routines gets the shadow versions if you’re running under privilege or if there exists the
shadow(3) functions as found in System V (this includes Solaris and Linux). Those systems that
implement a proprietary shadow password facility are unlikely to be supported.

The $members value returned bygetgr*() is a space-separated list of the login names of the
members of the group.

For thegethost*() functions, if theh_errno variable is supported in C, it will be returned to you
via $? if the function call fails. The@addrs value returned by a successful call is a list of raw
addresses returned by the corresponding library call.In the Internet domain, each address is four
bytes long; you can unpack it by saying something like:

my ($w,$x,$y,$z) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

use Socket;
my $iaddr = inet_aton("127.1"); # or whatever address
my $name = gethostbyaddr($iaddr, AF_INET);

or g oing the other way
my $straddr = inet_ntoa($iaddr);

In the opposite way, to resolve a hostname to theIP address you can write this:

use Socket;
my $packed_ip = gethostbyname("www.perl.org");
my $ip_address;
if (defined $packed_ip) {

$ip_address = inet_ntoa($packed_ip);
}

Make suregethostbyname is called inSCALAR context and that its return value is checked for
definedness.

Thegetprotobynumber function, even though it only takes one argument, has the precedence
of a list operator, so bew are:

perl v5.26.0 2018-06-12 32

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

getprotobynumber $number eq 'icmp' # WRONG
getprotobynumber($number eq 'icmp') # actually means this
getprotobynumber($number) eq 'icmp' # better this way

If you get tired of remembering which element of the return list contains which return value, by-
name interfaces are provided in standard modules:File::stat , Net::hostent ,
Net::netent , Net::protoent , Net::servent , Time::gmtime ,
Time::localtime , and User::grent . These override the normal built-ins, supplying
versions that return objects with the appropriate names for each field.For example:

use File::stat;
use User::pwent;
my $is_his = (stat($filename)−>uid == pwent($whoever)−>uid);

Even though it looks as though they’re the same method calls (uid), they aren’t, because a
File::stat object is different from aUser::pwent object.

Portability issues: ‘‘getpwnam’’ in perlport to ‘‘endservent’’ in perlport.

getsocknameSOCKET
Returns the packed sockaddr address of this end of theSOCKET connection, in case you don’t
know the address because you have sev eral different IPs that the connection might have come in
on.

use Socket;
my $mysockaddr = getsockname($sock);
my ($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockoptSOCKET,LEVEL,OPTNAME
Queries the option namedOPTNAME associated withSOCKET at a given LEVEL. Options may
exist at multiple protocol levels depending on the socket type, but at least the uppermost socket
level SOL_SOCKET(defined in theSocket module) will exist. To query options at another level
the protocol number of the appropriate protocol controlling the option should be supplied.For
example, to indicate that an option is to be interpreted by theTCP protocol,LEVEL should be set
to the protocol number ofTCP,which you can get usinggetprotobyname .

The function returns a packed string representing the requested socket option, orundef on error,
with the reason for the error placed in$! . Just what is in the packed string depends onLEVEL
andOPTNAME; consultgetsockopt (2) for details.A common case is that the option is an integer,
in which case the result is a packed integer, which you can decode usingunpack with the i (or
I) format.

Here’s an example to test whether Nagle’s algorithm is enabled on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname("tcp"))
or die "Could not determine the protocol number for tcp";

my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("I", $packed);
print "Nagle's algorithm is turned ",

$nodelay ? "off\n" : "on\n";

Portability issues: ‘‘getsockopt’’ in perlport.

glob EXPR
glob

In list context, returns a (possibly empty) list of filename expansions on the value ofEXPRsuch as
the standard Unix shell/bin/cshwould do. In scalar context, glob iterates through such filename
expansions, returning undef when the list is exhausted. Thisis the internal function implementing

perl v5.26.0 2018-06-12 33

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

the <*.c> operator, but you can use it directly. If EXPR is omitted,$_ is used. The <*.c>
operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

Note thatglob splits its arguments on whitespace and treats each segment as separate pattern.As
such, glob("*.c *.h") matches all files with a.c or .h extension. Theexpression
glob(".* *") matches all files in the current working directory. If you want to glob filenames
that might contain whitespace, you’ll have to use extra quotes around the spacey filename to
protect it. For example, to glob filenames that have an e followed by a space followed by anf ,
use one of:

my @spacies = <"*e f*">;
my @spacies = glob '"*e f*"';
my @spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

my @spacies = glob "'*${var}e f*'";
my @spacies = glob qq("*${var}e f*");

If non-empty braces are the only wildcard characters used in theglob , no filenames are matched,
but potentially many strings are returned.For example, this produces nine strings, one for each
pairing of fruits and colors:

my @many = glob "{apple,tomato,cherry}={green,yellow,red}";

This operator is implemented using the standardFile::Glob extension. SeeFile::Glob for
details, includingbsd_glob , which does not treat whitespace as a pattern separator.

Portability issues: ‘‘glob’’ in perlport.

gmtimeEXPR
gmtime

Works just like localtime but the returned values are localized for the standard Greenwich
time zone.

Note: When called in list context, $isdst , the last value returned by gmtime, is always 0. There
is no Daylight Saving Time inGMT.

Portability issues: ‘‘gmtime’’ in perlport.

gotoLABEL
gotoEXPR
goto &NAME

Thegoto LABEL form finds the statement labeled withLABEL and resumes execution there.It
can’t be used to get out of a block or subroutine given to sort . It can be used to go almost
anywhere else within the dynamic scope, including out of subroutines, but it’s usually better to use
some other construct such aslast or die . The author of Perl has never felt the need to use this
form of goto (in Perl, that is; C is another matter). (The difference is that C does not offer named
loops combined with loop control.Perl does, and this replaces most structured uses ofgoto in
other languages.)

The goto EXPR form expects to evaluate EXPR to a code reference or a label name.If it
evaluates to a code reference, it will be handled like goto &NAME , below. This is especially
useful for implementing tail recursion viagoto _ _SUB_ _ .

If the expression evaluates to a label name, its scope will be resolved dynamically. This allows for
computedgoto s per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this example,goto EXPR is exempt from the ‘‘looks like a function’’ rule. A pair
of parentheses following it does not (necessarily) delimit its argument. goto("NE")."XT" is
equivalent togoto NEXT . Also, unlike most named operators, this has the same precedence as
assignment.

Use ofgoto LABEL or goto EXPR to jump into a construct is deprecated and will issue a

perl v5.26.0 2018-06-12 34

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

warning. Even then, it may not be used to go into any construct that requires initialization, such as
a subroutine or aforeach loop. It also can’t be used to go into a construct that is optimized
aw ay.

Thegoto &NAME form is quite different from the other forms ofgoto . In fact, it isn’t a goto in
the normal sense at all, and doesn’t hav ethe stigma associated with other gotos. Instead, it exits
the current subroutine (losing any changes set bylocal) and immediately calls in its place the
named subroutine using the current value of@_. This is used byAUTOLOADsubroutines that
wish to load another subroutine and then pretend that the other subroutine had been called in the
first place (except that any modifications to@_in the current subroutine are propagated to the
other subroutine.) After thegoto , not even caller will be able to tell that this routine was
called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable containing a code reference
or a block that evaluates to a code reference.

grepBLOCK LIST
grepEXPR,LIST

This is similar in spirit to, but not the same as,grep(1) and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates theBLOCK or EXPR for each element ofLIST (locally setting$_ to each element) and
returns the list value consisting of those elements for which the expression evaluated to true.In
scalar context, returns the number of times the expression was true.

my @foo = grep(!/ˆ#/, @bar); # weed out comments

or equivalently,

my @foo = grep {!/ˆ#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elements of theLIST.
While this is useful and supported, it can cause bizarre results if the elements ofLIST are not
variables. Similarly, grep returns aliases into the original list, much as a for loop’s index variable
aliases the list elements.That is, modifying an element of a list returned by grep (for example, in
a foreach , map or anothergrep) actually modifies the element in the original list. This is
usually something to be avoided when writing clear code.

See alsomap for a list composed of the results of theBLOCK or EXPR.

hexEXPR
hex InterpretsEXPR as a hex string and returns the corresponding numeric value. IfEXPR is omitted,

uses$_ .

print hex '0xAf'; # prints '175'
print hex 'aF'; # s ame
$valid_input =˜ /\A(?:0?[xX])?(?:_?[0−9a−fA−F])*\z/

A hex string consists of hex digits and an optional0x or x prefix. Eachhex digit may be preceded
by a single underscore, which will be ignored.Any other character triggers a warning and causes
the rest of the string to be ignored (even leading whitespace, unlike oct). Only integers can be
represented, and integer overflow triggers a warning.

To convert strings that might start with any of 0, 0x , or 0b , seeoct . To present something as
hex, look intoprintf , sprintf , andunpack .

import LIST
There is no builtin import function. It is just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another module.The use function calls the
import method for the package used. See alsouse , perlmod, and Exporter.

indexSTR,SUBSTR,POSITION
indexSTR,SUBSTR

The index function searches for one string within another, but without the wildcard-like behavior
of a full regular-expression pattern match. It returns the position of the first occurrence of
SUBSTRin STRat or afterPOSITION. If POSITIONis omitted, starts searching from the beginning
of the string. POSITIONbefore the beginning of the string or after its end is treated as if it were

perl v5.26.0 2018-06-12 35

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

the beginning or the end, respectively. POSITION and the return value are based at zero. If the
substring is not found,index returns −1.

int EXPR
int Returns the integer portion ofEXPR. If EXPR is omitted, uses$_ . You should not use this

function for rounding: one because it truncates towards 0, and two because machine
representations of floating-point numbers can sometimes produce counterintuitive results. For
example,int(−6.725/0.025) produces −268 rather than the correct −269; that’s because it’s
really more like −268.99999999999994315658 instead.Usually, the sprintf , printf , or the
POSIX::floor andPOSIX::ceil functions will serve you better than willint .

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements theioctl (2) function. You’ll probably first have to say

require "sys/ioctl.ph"; # probably in
$Config{archlib}/sys/ioctl.ph

to get the correct function definitions.If sys/ioctl.phdoesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as<sys/ioctl.h>.
(There is a Perl script calledh2ph that comes with the Perl kit that may help you in this, but it’s
nontrivial.) SCALAR will be read and/or written depending on theFUNCTION; a C pointer to the
string value ofSCALAR will be passed as the third argument of the actualioctl call. (If
SCALAR has no string value but does have a numeric value, that value will be passed rather than a
pointer to the string value. To guarantee this to be true, add a0 to the scalar before using it.)The
pack and unpack functions may be needed to manipulate the values of structures used by
ioctl .

The return value ofioctl (andfcntl) is as follows:

if OS returns: then Perl returns:
−1 undefined value

0 s tring "0 but true"
anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

my $retval = ioctl(...) || −1;
printf "System returned %d\n", $retval;

The special string"0 but true" is exempt from Argument "..." isn't numeric
warnings on improper numeric conversions.

Portability issues: ‘‘ioctl’’ in perlport.

join EXPR,LIST
Joins the separate strings ofLIST into a single string with fields separated by the value ofEXPR,
and returns that new string. Example:

my $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlikesplit , join doesn’t take a pattern as its first argument. Comparesplit .

keys HASH
keys ARRAY

Called in list context, returns a list consisting of all the keys of the named hash, or in Perl 5.12 or
later only, the indices of an array. Perl releases prior to 5.12 will produce a syntax error if you try
to use an array argument. Inscalar context, returns the number of keys or indices.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash.Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned byeach or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely onkeys , values andeach to
repeatedly return the same order as each other. See ‘‘A lgorithmic Complexity Attacks’’ in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of

perl v5.26.0 2018-06-12 36

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Perl. Tied hashes may behave differently to Perl’s hashes with respect to changes in order on
insertion and deletion of items.

As a side effect, callingkeys resets the internal iterator of theHASH or ARRAY (seeeach). In
particular, calling keys in void context resets the iterator with no other overhead.

Here is yet another way to print your environment:

my @keys = keys %ENV;
my @values = values %ENV;
while (@keys) {

print pop(@keys), '=', pop(@values), "\n";
}

or how about sorted by key:

foreach my $key (sort(keys %ENV)) {
print $key, '=', $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying them will not affect
the original hash. Comparevalues .

To sort a hash by value, you’ll need to use asort function. Here’s a descending numeric sort of
a hash by its values:

foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

Used as an lvalue,keys allows you to increase the number of hash buckets allocated for the given
hash. Thiscan gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it−−256 of them, in fact, since it rounds
up to the next power of two. Thesebuckets will be retained even if you do%hash = () , use
undef %hash if you want to free the storage while%hash is still in scope.You can’t shrink
the number of buckets allocated for the hash usingkeys in this way (but you needn’t worry about
doing this by accident, as trying has no effect). keys @array in an lvalue context is a syntax
error.

Starting with Perl 5.14, an experimental feature allowed keys to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays

See alsoeach , values , andsort .

kill SIGNAL, LIST
kill SIGNAL

Sends a signal to a list of processes.Returns the number of arguments that were successfully used
to signal (which is not necessarily the same as the number of processes actually killed, e.g. where
a process group is killed).

my $cnt = kill 'HUP', $child1, $child2;
kill 'KILL', @goners;

SIGNAL may be either a signal name (a string) or a signal number. A signal name may start with a
SIG prefix, thusFOOand SIGFOO refer to the same signal. The string form ofSIGNAL is
recommended for portability because the same signal may have different numbers in different
operating systems.

perl v5.26.0 2018-06-12 37

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

A l ist of signal names supported by the current platform can be found in
$Config{sig_name} , which is provided by theConfig module. SeeConfig for more
details.

A neg ative signal name is the same as a negative signal number, killing process groups instead of
processes. For example, kill '−KILL', $pgrp and kill −9, $pgrp will send
SIGKILL to the entire process group specified.That means you usually want to use positive not
negative signals.

If SIGNAL is either the number 0 or the stringZERO(or SIGZERO), no signal is sent to the
process, but kill checks whether it’s possibleto send a signal to it (that means, to be brief, that
the process is owned by the same user, or we are the super-user). Thisis useful to check that a
child process is still alive (ev en if only as a zombie) and hasn’t changed itsUID. See perlport for
notes on the portability of this construct.

The behavior of kill when aPROCESSnumber is zero or negative depends on the operating system.
For example, on POSIX-conforming systems, zero will signal the current process group, −1 will
signal all processes, and any other negative PROCESSnumber will act as a negative signal number
and kill the entire process group specified.

If both theSIGNAL and thePROCESSare negative, the results are undefined.A warning may be
produced in a future version.

See ‘‘Signals’’ in perlipc for more details.

On some platforms such as Windows where thefork (2) system call is not available, Perl can be
built to emulatefork at the interpreter level. This emulation has limitations related to kill that
have to be considered, for code running on Windows and in code intended to be portable.

See perlfork for more details.

If there is noLISTof processes, no signal is sent, and the return value is 0. This form is sometimes
used, however, because it causes tainting checks to be run. But see ‘‘Laundering and Detecting
Tainted Data’’ in perlsec.

Portability issues: ‘‘kill’’ in perlport.

lastLABEL
lastEXPR
last Thelast command is like thebreak statement in C (as used in loops); it immediately exits the

loop in question.If the LABEL is omitted, the command refers to the innermost enclosing loop.
The last EXPR form, available starting in Perl 5.18.0, allows a label name to be computed at
run time, and is otherwise identical tolast LABEL . The continue block, if any, is not
executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
#...

}

last cannot be used to exit a block that returns a value such aseval {} , sub {} , or do {} ,
and should not be used to exit agrep or mapoperation.

Note that a block by itself is semantically identical to a loop that executes once.Thus last can
be used to effect an early exit out of such a block.

See alsocontinue for an illustration of howlast , next , and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, solast ("foo")."bar" will cause ‘‘bar’’ to be part of the
argument tolast .

lc EXPR
lc Returns a lowercased version ofEXPR. This is the internal function implementing the\L escape

in double-quoted strings.

If EXPR is omitted, uses$_ .

perl v5.26.0 2018-06-12 38

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

What gets returned depends on several factors:

If use bytes is in effect:
The results followASCII rules. Onlythe charactersA−Z change, toa−z respectively.

Otherwise, ifuse locale for LC_CTYPEis in effect:
Respects currentLC_CTYPElocale for code points < 256; and uses Unicode rules for the
remaining code points (this last can only happen if theUTF8 flag is also set). See perllocale.

Starting in v5.20, Perl uses full Unicode rules if the locale isUTF−8. Otherwise, there is a
deficiency in this scheme, which is that case changes that cross the 255/256 boundary are not
well-defined. For example, the lower case ofLATIN CAPITAL LETTER SHARP S(U+1E9E)
in Unicode rules is U+00DF (onASCII platforms). Butunderuse locale (prior to v5.20
or not aUTF−8 locale), the lower case of U+1E9E is itself, because 0xDF may not beLATIN
SMALL LETTER SHARP Sin the current locale, and Perl has no way of knowing if that
character even exists in the locale, much less what code point it is.Perl returns a result that is
above 255 (almost always the input character unchanged), for all instances (and there aren’t
many) where the 255/256 boundary would otherwise be crossed; and starting in v5.22, it
raises a locale warning.

Otherwise, IfEXPRhas theUTF8 flag set:
Unicode rules are used for the case change.

Otherwise, if use feature 'unicode_strings' or use locale
':not_characters' is in effect:

Unicode rules are used for the case change.

Otherwise:
ASCII rules are used for the case change. The lowercase of any character outside theASCII
range is the character itself.

lcfirst EXPR
lcfirst

Returns the value ofEXPR with the first character lowercased. Thisis the internal function
implementing the\l escape in double-quoted strings.

If EXPR is omitted, uses$_ .

This function behaves the same way under various pragmas, such as in a locale, aslc does.

lengthEXPR
length

Returns the length incharactersof the value ofEXPR. If EXPR is omitted, returns the length of
$_ . If EXPR is undefined, returnsundef .

This function cannot be used on an entire array or hash to find out how many elements these have.
For that, usescalar @array andscalar keys %hash , respectively.

Like all Perl character operations,length normally deals in logical characters, not physical
bytes. For how many bytes a string encoded asUTF−8 would take up, use
length(Encode::encode('UTF−8', EXPR)) (you’ll have to use Encode first). See
Encode and perlunicode.

_ _LINE_ _
A special token that compiles to the current line number.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success, false otherwise.

Portability issues: ‘‘link’’ in perlport.

listenSOCKET,QUEUESIZE
Does the same thing that thelisten(2) system call does. Returns true if it succeeded, false
otherwise. Seethe example in ‘‘Sockets: Client/Server Communication’’ in perlipc.

local EXPR
You really probably want to be usingmy instead, becauselocal isn’t what most people think of
as ‘‘local’’. See‘‘ Private Variables viamy()’’ i n perlsub for details.

perl v5.26.0 2018-06-12 39

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more than
one value is listed, the list must be placed in parentheses. See ‘‘Temporary Values vialocal()’’ i n
perlsub for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of array/hash
elements to the current block. See ‘‘Localized deletion of elements of composite types’’ i n
perlsub.

localtimeEXPR
localtime

Converts a time as returned by the time function to a 9−element list with the time analyzed for the
local time zone.Typically used as follows:

0 1 2 3 4 5 6 7 8
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric and come straight out of the C ‘struct tm’.$sec , $min , and
$hour are the seconds, minutes, and hours of the specified time.

$mday is the day of the month and$mon the month in the range0..11 , with 0 indicating
January and 11 indicating December. This makes it easy to get a month name from a list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year contains the number of years since 1900.To get a 4−digit year write:

$year += 1900;

To get the last two digits of the year (e.g., ‘‘01’’ in 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday.$yday is
the day of the year, in the range0..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false otherwise.

If EXPR is omitted,localtime uses the current time (as returned bytime).

In scalar context,localtime returns thectime(3) value:

my $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

The format of this scalar value isnot locale-dependent but built into Perl.For GMT instead of
local time use thegmtime builtin. Seealso theTime::Local module (for converting seconds,
minutes, hours, and such back to the integer value returned bytime), and thePOSIX module’s
strftime andmktime functions.

To get somewhat similar but locale-dependent date strings, set up your locale environment
variables appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
my $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or f or GMT formatted appropriately for your locale:
my $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that%aand%b, the short forms of the day of the week and the month of the year, may not
necessarily be three characters wide.

The Time::gmtime and Time::localtime modules provide a convenient, by-name access
mechanism to thegmtime andlocaltime functions, respectively.

For a comprehensive date and time representation look at the DateTime module onCPAN.

Portability issues: ‘‘localtime’’ in perlport.

perl v5.26.0 2018-06-12 40

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

lock THING
This function places an advisory lock on a shared variable or referenced object contained in
THING until the lock goes out of scope.

The value returned is the scalar itself, if the argument is a scalar, or a reference, if the argument is
a hash, array or subroutine.

lock is a ‘‘weak keyword’’; this means that if you’ve defined a function by this name (before any
calls to it), that function will be called instead.If you are not underuse threads::shared
this does nothing. See threads::shared.

log EXPR
log Returns the natural logarithm (basee) of EXPR. If EXPR is omitted, returns the log of$_ . To get

the log of another base, use basic algebra: The base-N log of a number is equal to the natural log
of that number divided by the natural log of N.For example:

sub log10 {
my $n = shift;
return log($n)/log(10);

}

See alsoexp for the inverse operation.

lstatFILEHANDLE
lstatEXPR
lstatDIRHANDLE
lstat

Does the same thing as thestat function (including setting the special_ filehandle) but stats a
symbolic link instead of the file the symbolic link points to. If symbolic links are unimplemented
on your system, a normalstat is done. For much more detailed information, please see the
documentation forstat .

If EXPR is omitted, stats$_ .

Portability issues: ‘‘lstat’’ in perlport.

m// The match operator. See ‘‘Regexp Quote-Like Operators’’ in perlop.

mapBLOCK LIST
mapEXPR,LIST

Evaluates theBLOCK or EXPR for each element ofLIST (locally setting$_ to each element) and
returns the list value composed of the results of each such evaluation. Inscalar context, returns
the total number of elements so generated.EvaluatesBLOCK or EXPR in list context, so each
element ofLIST may produce zero, one, or more elements in the returned value.

my @chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.

my @squares = map { $_ * $_ } @numbers;

translates a list of numbers to their squared values.

my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

shows that number of returned elements can differ from the number of input elements.To omit an
element, return an empty list (). This could also be achieved by writing

my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

which makes the intention more clear.

Map always returns a list, which can be assigned to a hash such that the elements become
key/value pairs. See perldata for more details.

my %hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

perl v5.26.0 2018-06-12 41

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my %hash;
foreach (@array) {

$hash{get_a_key_for($_)} = $_;
}

Note that$_ is an alias to the list value, so it can be used to modify the elements of theLIST.
While this is useful and supported, it can cause bizarre results if the elements ofLIST are not
variables. Usinga regular foreach loop for this purpose would be clearer in most cases.See
alsogrep for a list composed of those items of the original list for which theBLOCK or EXPR
evaluates to true.

{ starts both hash references and blocks, somap { ... could be either the start of mapBLOCK
LIST or mapEXPR, LIST. Because Perl doesn’t look ahead for the closing} it has to take a guess
at which it’s dealing with based on what it finds just after the{ . Usually it gets it right, but if it
doesn’t it won’t realize something is wrong until it gets to the} and encounters the missing (or
unexpected) comma. The syntax error will be reported close to the} , but you’ll need to change
something near the{ such as using a unary+ or semicolon to give Perl some help:

my %hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong
my %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
my %hash = map {; "\L$_" => 1 } @array # this also works
my %hash = map { ("\L$_" => 1) } @array # as does this
my %hash = map { lc($_) => 1 } @array # and this.
my %hash = map +(lc($_) => 1), @array # this is EXPR and works!

my %hash = map (l c($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use+{ :

my @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
c omma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK
mkdir FILENAME
mkdir

Creates the directory specified byFILENAME, with permissions specified byMASK (as modified
by umask). If it succeeds it returns true; otherwise it returns false and sets$! (errno). MASK
defaults to 0777 if omitted, andFILENAME defaults to$_ if omitted.

In general, it is better to create directories with a permissive MASK and let the user modify that
with their umask than it is to supply a restrictive MASK and give the user no way to be more
permissive. The exceptions to this rule are when the file or directory should be kept private (mail
files, for instance). The documentation forumask discusses the choice ofMASK in more detail.

Note that according to thePOSIX 1003.1−1996the FILENAME may have any number of trailing
slashes. Someoperating and filesystems do not get this right, so Perl automatically removes all
trailing slashes to keep everyone happy.

To recursively create a directory structure, look at themake_path function of the File::Path
module.

msgctlID,CMD,ARG
Calls the System VIPC functionmsgctl(2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT, thenARG must be a variable
that will hold the returnedmsqid_ds structure. Returnslike ioctl : the undefined value for
error, "0 but true" for zero, or the actual return value otherwise.See also ‘‘SysV IPC’’ in
perlipc and the documentation forIPC::SysV andIPC::Semaphore .

Portability issues: ‘‘msgctl’’ in perlport.

perl v5.26.0 2018-06-12 42

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

msggetKEY,FLAGS
Calls the System VIPC function msgget (2). Returnsthe message queue id, orundef on error.
See also ‘‘SysVIPC’’ in perlipc and the documentation forIPC::SysV andIPC::Msg .

Portability issues: ‘‘msgget’’ in perlport.

msgrcvID,VAR,SIZE,TYPE,FLAGS
Calls the System VIPC function msgrcv to receive a message from message queueID into variable
VAR with a maximum message size ofSIZE. Note that when a message is received, the message
type as a native long integer will be the first thing inVAR, followed by the actual message.This
packing may be opened withunpack("l! a*") . Taints the variable. Returnstrue if
successful, false on error. See also ‘‘SysV IPC’’ in perlipc and the documentation for
IPC::SysV andIPC::Msg .

Portability issues: ‘‘msgrcv’’ in perlport.

msgsndID,MSG,FLAGS
Calls the System VIPC function msgsnd to send the messageMSG to the message queueID. MSG
must begin with the native long integer message type, be followed by the length of the actual
message, and then finally the message itself.This kind of packing can be achieved with
pack("l! a*", $type, $message) . Returns true if successful, false on error. See also
‘‘ SysV IPC’’ in perlipc and the documentation forIPC::SysV andIPC::Msg .

Portability issues: ‘‘msgsnd’’ in perlport.

my VARLIST
my TYPE VARLIST
my VARLIST : ATTRS
my TYPE VARLIST : ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block, file, oreval . If
more than one variable is listed, the list must be placed in parentheses.

The exact semantics and interface ofTYPE and ATTRS are still evolving. TYPE may be a
bareword, a constant declared withuse constant , or _ _PACKAGE_ _. It is currently bound
to the use of the fields pragma, and attributes are handled using the attributes pragma, or starting
from Perl 5.8.0 also via the Attribute::Handlers module. See ‘‘Private Variables viamy()’’ i n
perlsub for details.

Note that with a parenthesised list,undef can be used as a dummy placeholder, for example to
skip assignment of initial values:

my (undef, $min, $hour) = localtime;

nextLABEL
nextEXPR
next

Thenext command is like thecontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
#...

}

Note that if there were acontinue block on the above, it would get executed even on discarded
lines. If LABEL is omitted, the command refers to the innermost enclosing loop.The next
EXPRform, available as of Perl 5.18.0, allows a label name to be computed at run time, being
otherwise identical tonext LABEL .

next cannot be used to exit a block which returns a value such aseval {} , sub {} , or do
{} , and should not be used to exit agrep or mapoperation.

Note that a block by itself is semantically identical to a loop that executes once.Thusnext will
exit such a block early.

See alsocontinue for an illustration of howlast , next , and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from

perl v5.26.0 2018-06-12 43

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

the looks-like-a-function rule, sonext ("foo")."bar" will cause ‘‘bar’’ to be part of the
argument tonext .

no MODULE VERSION LIST
no MODULE VERSION
no MODULE LIST
no MODULE
no VERSION

See theuse function, of whichno is the opposite.

oct EXPR
oct InterpretsEXPR as an octal string and returns the corresponding value. (IfEXPR happens to start

off with 0x , interprets it as a hex string. If EXPR starts off with 0b , it is interpreted as a binary
string. Leadingwhitespace is ignored in all three cases.) The following will handle decimal,
binary, octal, and hex in standard Perl notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses$_ . To go the other way (produce a number in octal), usesprintf or
printf :

my $dec_perms = (stat("filename"))[2] & 07777;
my $oct_perm_str = sprintf "%o", $perms;

The oct function is commonly used when a string such as644 needs to be converted into a file
mode, for example. AlthoughPerl automatically converts strings into numbers as needed, this
automatic conversion assumes base 10.

Leading white space is ignored without warning, as too are any trailing non-digits, such as a
decimal point (oct only handles non-negative integers, not negative integers or floating point).

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE

Opens the file whose filename is given by EXPR,and associates it withFILEHANDLE.

Simple examples to open a file for reading:

open(my $fh, "<", "input.txt")
or die "Can't open < input.txt: $!";

and for writing:

open(my $fh, ">", "output.txt")
or die "Can't open > output.txt: $!";

(The following is a comprehensive reference toopen : for a gentler introduction you may consider
perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element), a new filehandle is
autovivified, meaning that the variable is assigned a reference to a newly allocated anonymous
filehandle. Otherwiseif FILEHANDLE is an expression, its value is the real filehandle.(This is
considered a symbolic reference, souse strict "refs" shouldnotbe in effect.)

If three (or more) arguments are specified, the open mode (including optional encoding) in the
second argument are distinct from the filename in the third.If MODE is < or nothing, the file is
opened for input.If MODE is >, the file is opened for output, with existing files first being
truncated (‘‘clobbered’’) and nonexisting files newly created.If MODE is >>, the file is opened for
appending, again being created if necessary.

You can put a+ in front of the> or < to indicate that you want both read and write access to the
file; thus+< is almost always preferred for read/write updates— the +> mode would clobber the
file first. You can’t usually use either read-write mode for updating textfiles, since they hav e
variable-length records. See the−i switch in perlrun for a better approach.The file is created with
permissions of0666 modified by the process’sumask value.

perl v5.26.0 2018-06-12 44

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

These various prefixes correspond to thefopen(3) modes ofr , r+ , w, w+, a, anda+.

In the one− and two-argument forms of the call, the mode and filename should be concatenated (in
that order), preferably separated by white space.You can — but shouldn’t — omit the mode in
these forms when that mode is<. It is safe to use the two-argument form ofopen if the filename
argument is a known literal.

For three or more arguments ifMODE is |− , the filename is interpreted as a command to which
output is to be piped, and ifMODE is −| , the filename is interpreted as a command that pipes
output to us. In the two-argument (and one-argument) form, one should replace dash (−) with the
command. See‘‘ Usingopen()for IPC’’ in perlipc for more examples of this.(You are not allowed
to open to a command that pipes both inand out, but see IPC::Open2, IPC::Open3, and
‘‘ Bidirectional Communication with Another Process’’ in perlipc for alternatives.)

In the form of pipe opens taking three or more arguments, ifLIST is specified (extra arguments
after the command name) thenLIST becomes arguments to the command invoked if the platform
supports it.The meaning ofopen with more than three arguments for non-pipe modes is not yet
defined, but experimental ‘‘layers’’ may give extra LIST arguments meaning.

In the two-argument (and one-argument) form, opening<− or − opensSTDIN and opening>−
opensSTDOUT.

You may (and usually should) use the three-argument form of open to specify I/O layers
(sometimes referred to as ‘‘disciplines’’) to apply to the handle that affect how the input and
output are processed (see open and PerlIO for more details).For example:

open(my $fh, "<:encoding(UTF−8)", $filename)
|| die "Can't open UTF−8 encoded $filename: $!";

opens the UTF8−encoded file containing Unicode characters; see perluniintro. Note that if layers
are specified in the three-argument form, then default layers stored in ${ˆOPEN} (see perlvar;
usually set by the open pragma or the switch−CioD) are ignored. Those layers will also be
ignored if you specify a colon with no name following it.In that case the default layer for the
operating system (:raw on Unix, :crlf on Windows) is used.

Open returns nonzero on success, the undefined value otherwise. If theopen involved a pipe, the
return value happens to be the pid of the subprocess.

On some systems (in general,DOS− and Windows-based systems)binmode is necessary when
you’re not working with a text file. For the sake of portability it is a good idea always to use it
when appropriate, and never to use it when it isn’t appropriate. Also,people can set their I/O to be
by default UTF8−encoded Unicode, not bytes.

When opening a file, it’s seldom a good idea to continue if the request failed, soopen is
frequently used withdie . Even if die won’t do what you want (say, in aCGI script, where you
want to format a suitable error message (but there are modules that can help with that problem))
always check the return value from opening a file.

The filehandle will be closed when its reference count reaches zero. If it is a lexically scoped
variable declared withmy, that usually means the end of the enclosing scope.However, this
automatic close does not check for errors, so it is better to explicitly close filehandles, especially
those used for writing:

close($handle)
|| warn "close failed: $!";

An older style is to use a bareword as the filehandle, as

open(FH, "<", "input.txt")
or die "Can't open < input.txt: $!";

Then you can useFHas the filehandle, inclose FH and<FH> and so on.Note that it’s a global
variable, so this form is not recommended in new code.

As a shortcut a one-argument call takes the filename from the global scalar variable of the same
name as the filehandle:

perl v5.26.0 2018-06-12 45

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

$ARTICLE = 100;
open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";

Here $ARTICLE must be a global (package) scalar variable − not one declared withmy or
state .

As a special case the three-argument form with a read/write mode and the third argument being
undef :

open(my $tmp, "+>", undef) or die ...

opens a filehandle to a newly created empty anonymous temporary file.(This happens under any
mode, which makes+> the only useful and sensible mode to use.)You will need toseek to do
the reading.

Perl is built using PerlIO by default. Unlessyou’ve changed this (such as building Perl with
Configure −Uuseperlio), you can open filehandles directly to Perl scalars via:

open(my $fh, ">", \$variable) || ..

To (re)openSTDOUTor STDERRas an in-memory file, close it first:

close STDOUT;
open(STDOUT, ">", \$variable)

or die "Can't open STDOUT: $!";

See perliol for detailed info on PerlIO.

General examples:

open(my $log, ">>", "/usr/spool/news/twitlog");
if t he open fails, output is discarded

open(my $dbase, "+<", "dbase.mine") # open for update
or die "Can't open 'dbase.mine' for update: $!";

open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";

open(my $article_fh, "−|", "caesar <$article") # decrypt
article

or die "Can't start caesar: $!";

open(my $article_fh, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(my $out_fh, "|−", "sort >Tmp$$") # $$ is o ur process id
or die "Can't start sort: $!";

i n−memory files
open(my $memory, ">", \$var)

or die "Can't open memory file: $!";
print $memory "foo!\n"; # output will appear in $var

You may also, in the Bourne shell tradition, specify anEXPRbeginning with>&, in which case the
rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric) to be
duped (as indup(2)) and opened.You may use& after >, >>, <, +>, +>>, and +<. The mode
you specify should match the mode of the original filehandle. (Duping a filehandle does not take
into account any existing contents ofIO buffers.) If you use the three-argument form, then you
can pass either a number, the name of a filehandle, or the normal ‘‘reference to a glob’’.

Here is a script that saves, redirects, and restoresSTDOUTandSTDERRusing various methods:

perl v5.26.0 2018-06-12 46

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

#!/usr/bin/perl
open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", *STDERR) or die "Can't dup STDERR: $!";

open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";

select STDERR; $| = 1; # make unbuffered
select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # t his works for
print STDERR "stderr 1\n"; # s ubprocesses too

open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
open(STDERR, ">&OLDERR") or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify'<&=X' , whereX is a file descriptor number or a filehandle, then Perl will do an
equivalent of C’s fdopen(3) of that file descriptor (and not calldup(2)); this is more parsimonious
of file descriptors.For example:

open for input, reusing the fileno of $fd
open(my $fh, "<&=", $fd)

or

open(my $fh, "<&=$fd")

or

open for append, using the fileno of $oldfh
open(my $fh, ">>&=", $oldfh)

Being parsimonious on filehandles is also useful (besides being parsimonious) for example when
something is dependent on file descriptors, like for example locking usingflock . If you do just
open(my $A, ">>&", $B) , the filehandle$A will not have the same file descriptor as$B,
and thereforeflock($A) will not flock($B) nor vice versa. Butwith open(my $A,
">>&=", $B) , the filehandles will share the same underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C library’s’ fdopen(3) to implement
the= functionality. On many Unix systems,fdopen(3) fails when file descriptors exceed a certain
value, typically 255.For Perls 5.8.0 and later, PerlIO is (most often) the default.

You can see whether your Perl was built with PerlIO by runningperl −V:useperlio . If i t
says'define' , you have PerlIO; otherwise you don’t.

If you open a pipe on the command− (that is, specify either|− or −| with the one− or two-
argument forms ofopen), an implicitfork is done, soopen returns twice: in the parent process
it returns the pid of the child process, and in the child process it returns (a defined)0. Use
defined($pid) or // to determine whether the open was successful.

For example, use either

my $child_pid = open(my $from_kid, "−|") // die "Can't fork: $!";

or

my $child_pid = open(my $to_kid, "|−") // die "Can't fork: $!";

followed by

perl v5.26.0 2018-06-12 47

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

if ($child_pid) {
am t he parent:
either write $to_kid or else read $from_kid
...

waitpid $child_pid, 0;
} e lse {

am t he child; use STDIN/STDOUT normally
...
exit;

}

The filehandle behaves normally for the parent, but I/O to that filehandle is piped from/to the
STDOUT/STDIN of the child process.In the child process, the filehandle isn’t opened — I/O
happens from/to the new STDOUT/STDIN. Typically this is used like the normal piped open when
you want to exercise more control over just how the pipe command gets executed, such as when
running setuid and you don’t want to have to scan shell commands for metacharacters.

The following blocks are more or less equivalent:

open(my $fh, "|tr '[a−z]' '[A−Z]'");
open(my $fh, "|−", "tr '[a−z]' '[A−Z]'");
open(my $fh, "|−") || exec 'tr', '[a−z]', '[A−Z]';
open(my $fh, "|−", "tr", '[a−z]', '[A−Z]');

open(my $fh, "cat −n '$file'|");
open(my $fh, "−|", "cat −n '$file'");
open(my $fh, "−|") || exec "cat", "−n", $file;
open(my $fh, "−|", "cat", "−n", $file);

The last two examples in each block show the pipe as ‘‘list form’’, which is not yet supported on
all platforms. A good rule of thumb is that if your platform has a realfork (in other words, if
your platform is Unix, including Linux and MacOS X), you can use the list form.You would
want to use the list form of the pipe so you can pass literal arguments to the command without risk
of the shell interpreting any shell metacharacters in them.However, this also bars you from
opening pipes to commands that intentionally contain shell metacharacters, such as:

open(my $fh, "|cat −n | expand −4 | lpr")
|| die "Can't open pipeline to lpr: $!";

See ‘‘Safe Pipe Opens’’ in perlipc for more examples of this.

Perl will attempt to flush all files opened for output before any operation that may do a fork, but
this may not be supported on some platforms (see perlport).To be safe, you may need to set$|
($AUTOFLUSHin English) or call theautoflush method of IO::Handle on any open
handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor as determined by the value of$ˆF . See ‘‘$ˆF’’ in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish, then returns
the status value in$? and${ˆCHILD_ERROR_NATIVE} .

The filename passed to the one− and two-argument forms ofopen will have leading and trailing
whitespace deleted and normal redirection characters honored.This property, known as ‘‘magic
open’’, can often be used to good effect. A user could specify a filename of‘‘ rsh cat file |’’ , or you
could change certain filenames as needed:

$filename =˜ s/(.*\.gz)\s*$/gzip −dc < $1|/;
open(my $fh, $filename) or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

open(my $fh, "<", $file)
|| die "Can't open $file: $!";

otherwise it’s necessary to protect any leading and trailing whitespace:

perl v5.26.0 2018-06-12 48

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

$file =˜ s#ˆ(\s)#./$1#;
open(my $fh, "< $file\0")

|| die "Can't open $file: $!";

(this may not work on some bizarre filesystems).One should conscientiously choose between the
magicandthree-argumentform of open :

open(my $in, $ARGV[0]) || die "Can't open $ARGV[0]: $!";

will allow the user to specify an argument of the form"rsh cat file |" , but will not work
on a filename that happens to have a trailing space, while

open(my $in, "<", $ARGV[0])
|| die "Can't open $ARGV[0]: $!";

will have exactly the opposite restrictions. (However, some shells support the syntaxperl
your_program.pl <(rsh cat file) , which produces a filename that can be opened
normally.)

If you want a ‘‘real’’ C open(2), then you should use thesysopen function, which involves no
such magic (but uses different filemodes than Perlopen , which corresponds to Cfopen(3)). This
is another way to protect your filenames from interpretation.For example:

use IO::Handle;
sysopen(my $fh, $path, O_RDWR|O_CREAT|O_EXCL)

or die "Can't open $path: $!";
$fh−>autoflush(1);
print $fh "stuff $$\n";
seek($fh, 0, 0);
print "File contains: ", readline($fh);

Seeseek for some details about mixing reading and writing.

Portability issues: ‘‘open’’ in perlport.

opendirDIRHANDLE,EXPR
Opens a directory namedEXPR for processing by readdir , telldir , seekdir ,
rewinddir , and closedir . Returns true if successful.DIRHANDLE may be an expression
whose value can be used as an indirect dirhandle, usually the real dirhandle name.If DIRHANDLE
is an undefined scalar variable (or array or hash element), the variable is assigned a reference to a
new anonymous dirhandle; that is, it’s autovivified. DIRHANDLEs have their own namespace
separate from FILEHANDLEs.

See the example atreaddir .

ord EXPR
ord Returns the numeric value of the first character ofEXPR. If EXPR is an empty string, returns 0.If

EXPR is omitted, uses$_ . (Notecharacter, not byte.)

For the reverse, seechr . See perlunicode for more about Unicode.

our VARLIST
our TYPE VARLIST
our VARLIST : ATTRS
our TYPE VARLIST : ATTRS

our makes a lexical alias to a package (i.e. global) variable of the same name in the current
package for use within the current lexical scope.

our has the same scoping rules asmy or state , meaning that it is only valid within a lexical
scope. Unlike my andstate , which both declare new (lexical) variables,our only creates an
alias to an existing variable: a package variable of the same name.

This means that whenuse strict 'vars' is in effect, our lets you use a package variable
without qualifying it with the package name, but only within the lexical scope of theour
declaration. Thisapplies immediately— even within the same statement.

perl v5.26.0 2018-06-12 49

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

package Foo;
use strict;

$Foo::foo = 23;

{
our $foo; # alias to $Foo::foo
print $foo; # prints 23

}

print $Foo::foo; # prints 23

print $foo; # ERROR: requires explicit package name

This works even if the package variable has not been used before, as package variables spring into
existence when first used.

package Foo;
use strict;

our $foo = 23; # j ust like $Foo::foo = 23

print $Foo::foo; # prints 23

Because the variable becomes legal immediately underuse strict 'vars' , so long as there
is no variable with that name is already in scope, you can then reference the package variable
again even within the same statement.

package Foo;
use strict;

my $foo = $foo; # error, undeclared $foo on right−hand side
our $foo = $foo; # no errors

If more than one variable is listed, the list must be placed in parentheses.

our($bar, $baz);

An our declaration declares an alias for a package variable that will be visible across its entire
lexical scope, even across package boundaries. The package in which the variable is entered is
determined at the point of the declaration, not at the point of use.This means the following
behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the same lexical scope are allowed if they are in
different packages. If they happen to be in the same package, Perl will emit warnings if you have
asked for them, just like multiple my declarations. Unlike a secondmy declaration, which will
bind the name to a fresh variable, a secondour declaration in the same package, in the same
scope, is merely redundant.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

perl v5.26.0 2018-06-12 50

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

our $bar; # emits warning but has no other effect
print $bar; # s till prints 30

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface ofTYPE andATTRSare still evolving. TYPE is currently bound
to the use of the fields pragma, and attributes are handled using the attributes pragma, or, starting
from Perl 5.8.0, also via the Attribute::Handlers module. See ‘‘Private Variables viamy()’’ i n
perlsub for details.

Note that with a parenthesised list,undef can be used as a dummy placeholder, for example to
skip assignment of initial values:

our (undef, $min, $hour) = localtime;

our differs fromuse vars , which allows use of an unqualified nameonly within the affected
package, but across scopes.

packTEMPLATE,LIST
Takes aLIST of values and converts it into a string using the rules given by the TEMPLATE. The
resulting string is the concatenation of the converted values. Typically, each converted value looks
like its machine-level representation. For example, on 32−bit machines an integer may be
represented by a sequence of 4 bytes, whichwill in Perl be presented as a string that’s 4
characters long.

See perlpacktut for an introduction to this function.

TheTEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null−terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte,
like vec()).

B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).

c A signed char (8−bit) value.
C An unsigned char (octet) value.
W An unsigned char value (can be greater than 255).

s A signed short (16−bit) value.
S An unsigned short value.

l A signed long (32−bit) value.
L An unsigned long value.

q A signed quad (64−bit) value.
Q An unsigned quad value.

(Quads are available only if your system supports 64−bit
integer values _and_ if Perl has been compiled to support
those. Raises an exception otherwise.)

i A signed integer value.
I A unsigned integer value.

(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

n An unsigned short (16−bit) in "network" (big−endian) order.
N An unsigned long (32−bit) in "network" (big−endian) order.

perl v5.26.0 2018-06-12 51

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

v An unsigned short (16−bit) in "VAX" (little−endian) order.
V An unsigned long (32−bit) in "VAX" (little−endian) order.

j A Perl internal signed integer value (IV).
J A Perl internal unsigned integer value (UV).

f A single−precision float in native format.
d A double−precision float in native format.

F A Perl internal floating−point value (NV) in native format
D A float of long−double precision in native format.

(Long doubles are available only if your system supports
long double values _and_ if Perl has been compiled to
support those. Raises an exception otherwise.
Note that there are different long double formats.)

p A pointer to a null−terminated string.
P A pointer to a structure (fixed−length string).

u A uuencoded string.
U A Unicode character number. Encodes to a character in char−

acter mode and UTF−8 (or UTF−EBCDIC in EBCDIC platforms) in
byte mode.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for details). Its bytes represent an unsigned integer in
base 128, most significant digit first, with as few digits
as possible. Bit eight (the high bit) is set on each byte
except the last.

x A null byte (a.k.a ASCII NUL, "\000", chr(0))
X Back up a byte.
@ Null−fill or truncate to absolute position, counted from the

start of the innermost ()−group.
. N ull−fill or truncate to absolute position specified by

the value.
(S tart of a ()−group.

One or more modifiers below may optionally follow certain letters in theTEMPLATE (the second
column lists letters for which the modifier is valid):

! s SlLiI Forces native (short, long, int) sizes instead
of fixed (16−/32−bit) sizes.

! x X Make x and X act as alignment commands.

! n NvV Treat integers as signed instead of unsigned.

! @. S pecify position as byte offset in the internal
representation of the packed string. Efficient
but dangerous.

> sSiIlLqQ Force big−endian byte−order on the type.
jJfFdDpP (The "big end" touches the construct.)

< sSiIlLqQ Force little−endian byte−order on the type.
jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used on() groups to force a particular byte-order on all
components in that group, including all its subgroups.

perl v5.26.0 2018-06-12 52

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

The following rules apply:

• Each letter may optionally be followed by a number indicating the repeat count.A numeric
repeat count may optionally be enclosed in brackets, as inpack("C[80]", @arr) . The
repeat count gobbles that many values from theLIST when used with all format types other
thana, A, Z, b, B, h, H, @, . , x , X, and P, where it means something else, described below.
Supplying a* for the repeat count instead of a number means to use however many items are
left, except for:

• @, x , andX, where it is equivalent to0.

• <.>, where it means relative to the start of the string.

• u, where it is equivalent to 1 (or 45, which here is equivalent).

One can replace a numeric repeat count with a template letter enclosed in brackets to use the
packed byte length of the bracketed template for the repeat count.

For example, the templatex[L] skips as many bytes as in a packed long, and the template
"$t X[$t] $t" unpacks twice whatever $t (when variable-expanded) unpacks. If the
template in brackets contains alignment commands (such asx![d]), its packed length is
calculated as if the start of the template had the maximal possible alignment.

When used withZ, a * as the repeat count is guaranteed to add a trailing null byte, so the
resulting string is always one byte longer than the byte length of the item itself.

When used with@, the repeat count represents an offset from the start of the innermost()
group.

When used with. , the repeat count determines the starting position to calculate the value
offset as follows:

• If the repeat count is0, it’s relative to the current position.

• If the repeat count is* , the offset is relative to the start of the packed string.

• And if it’s an integern, the offset is relative to the start of thenth innermost() group,
or to the start of the string ifn is bigger then the group level.

The repeat count foru is interpreted as the maximal number of bytes to encode per line of
output, with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

• Thea, A, and Z types gobble just one value, but pack it as a string of length count, padding
with nulls or spaces as needed. When unpacking,A strips trailing whitespace and nulls,Z
strips everything after the first null, anda returns data with no stripping at all.

If the value to pack is too long, the result is truncated. If it’s too long and an explicit count is
provided,Z packs only$count−1 bytes, followed by a null byte.ThusZ always packs a
trailing null, except when the count is 0.

• Likewise, theb and B formats pack a string that’s that many bits long. Each such format
generates 1 bit of the result. These are typically followed by a repeat count likeB8 or B64.

Each result bit is based on the least-significant bit of the corresponding input character, i.e.,
on ord($char)%2 . In particular, characters"0" and "1" generate bits 0 and 1, as do
characters"\000" and"\001" .

Starting from the beginning of the input string, each 8−tuple of characters is converted to 1
character of output.With formatb, the first character of the 8−tuple determines the least-
significant bit of a character; with formatB, it determines the most-significant bit of a
character.

If the length of the input string is not evenly divisible by 8, the remainder is packed as if the
input string were padded by null characters at the end.Similarly during unpacking, ‘‘extra’’
bits are ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field.On unpacking, bits are
converted to a string of0s and1s.

perl v5.26.0 2018-06-12 53

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

• The h and H formats pack a string that many nybbles (4−bit groups, representable as
hexadecimal digits,"0".."9" "a".."f") long.

For each such format,pack generates 4 bits of result.With non-alphabetical characters, the
result is based on the 4 least-significant bits of the input character, i.e., on
ord($char)%16 . In particular, characters"0" and"1" generate nybbles 0 and 1, as do
bytes "\000" and "\001" . For characters"a".."f" and "A".."F" , the result is
compatible with the usual hexadecimal digits, so that"a" and"A" both generate the nybble
0xA==10 . Use only these specific hex characters with this format.

Starting from the beginning of the template topack , each pair of characters is converted to 1
character of output.With format h, the first character of the pair determines the least-
significant nybble of the output character; with formatH, it determines the most-significant
nybble.

If the length of the input string is not even, it behaves as if padded by a null character at the
end. Similarly, ‘‘extra’’ nybbles are ignored during unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input field.For unpack , nybbles are
converted to a string of hexadecimal digits.

• The p format packs a pointer to a null-terminated string.You are responsible for ensuring
that the string is not a temporary value, as that could potentially get deallocated before you
got around to using the packed result.TheP format packs a pointer to a structure of the size
indicated by the length.A null pointer is created if the corresponding value forp or P is
undef ; similarly with unpack , where a null pointer unpacks intoundef .

If your system has a strange pointer size— meaning a pointer is neither as big as an int nor as
big as a long— it may not be possible to pack or unpack pointers in big− or little-endian byte
order. Attempting to do so raises an exception.

• The / template character allows packing and unpacking of a sequence of items where the
packed structure contains a packed item count followed by the packed items themselves.
This is useful when the structure you’re unpacking has encoded the sizes or repeat counts for
some of its fields within the structure itself as separate fields.

For pack , you write length-item/ sequence-item, and the length-itemdescribes how the
length value is packed. Formats likely to be of most use are integer-packing ones like n for
Java strings,w for ASN.1or SNMP,andN for SunXDR.

For pack , sequence-itemmay have a repeat count, in which case the minimum of that and
the number of available items is used as the argument forlength-item. If it has no repeat
count or uses a ’*’, the number of available items is used.

For unpack , an internal stack of integer arguments unpacked so far is used.You write
/ sequence-itemand the repeat count is obtained by popping off the last element from the
stack. Thesequence-itemmust not have a repeat count.

If sequence-itemrefers to a string type ("A" , "a" , or "Z"), the length-itemis the string
length, not the number of strings.With an explicit repeat count for pack, the packed string is
adjusted to that length.For example:

This code: gives this result:

unpack("W/a", "\004Gurusamy") ("Guru")
unpack("a3/A A*", "007 Bond J ") (" B ond", "J")
unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) "2ab"

The length-itemis not returned explicitly fromunpack .

Supplying a count to thelength-itemformat letter is only useful withA, a, or Z. Packing

perl v5.26.0 2018-06-12 54

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

with a length-itemof a or Z may introduce"\000" characters, which Perl does not regard
as legal in numeric strings.

• The integer typess , S, l , and L may be followed by a! modifier to specify native shorts or
longs. Asshown in the example above, a bare l means exactly 32 bits, although the native
long as seen by the local C compiler may be larger. This is mainly an issue on 64−bit
platforms. You can see whether using! makes any difference this way:

printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");

printf "format l is %d, l! is %d\n",
length pack("l"), length pack("l!");

i! andI! are also allowed, but only for completeness’ sake: they are identical toi andI .

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the platform where
Perl was built are also available from the command line:

$ perl −V:{short,int,long{,long}}size
shortsize='2';
intsize='4';
longsize='4';
longlongsize='8';

or programmatically via theConfig module:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long support.

• The integer formatss , S, i , I , l , L, j , and J are inherently non-portable between processors
and operating systems because they obey native byteorder and endianness.For example, a
4−byte integer 0x12345678 (305419896 decimal) would be ordered natively (arranged in and
handled by theCPU registers) into bytes as

0x12 0x34 0x56 0x78 # big−endian
0x78 0x56 0x34 0x12 # l ittle−endian

Basically, Intel andVAX CPUs are little-endian, while everybody else, including Motorola
m68k/88k,PPC, Sparc,HP PA, Power, and Cray, are big-endian. Alpha andMIPS can be
either: Digital/Compaq uses (well, used) them in little-endian mode, but SGI/Cray uses them
in big-endian mode.

The namesbig-endianand little-endianare comic references to the egg-eating habits of the
little-endian Lilliputians and the big-endian Blefuscudians from the classic Jonathan Swift
satire,Gulliver’s Travels. This entered computer lingo via the paper ‘‘On Holy Wars and a
Plea for Peace’’ by Danny Cohen,USC/ISI IEN 137,April 1, 1980.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

These are called mid-endian, middle-endian, mixed-endian, or just weird.

You can determine your system endianness with this incantation:

printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

The byteorder on the platform where Perl was built is also available via Config:

perl v5.26.0 2018-06-12 55

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

use Config;
print "$Config{byteorder}\n";

or from the command line:

$ perl −V:byteorder

Byteorders"1234" and "12345678" are little-endian;"4321" and "87654321" are
big-endian. Systemswith multiarchitecture binaries will have "ffff" , signifying that static
information doesn’t work, one must use runtime probing.

For portably packed integers, either use the formatsn, N, v , and V or else use the> and<
modifiers described immediately below. See also perlport.

• Also floating point numbers have endianness. Usually(but not always) this agrees with the
integer endianness.Even though most platforms these days use theIEEE 754binary format,
there are differences, especially if the long doubles are involved. You can see theConfig
variables doublekind and longdblkind (also doublesize , longdblsize): the
‘‘ kind’’ values are enums, unlikebyteorder .

Portability-wise the best option is probably to keep to theIEEE 75464−bit doubles, and of
agreed-upon endianness. Another possibility is the"%a") format ofprintf .

• Starting with Perl 5.10.0, integer and floating-point formats, along with thep andP formats
and () groups, may all be followed by the> or < endianness modifiers to respectively
enforce big− or little-endian byte-order. These modifiers are especially useful given how n,
N, v , andV don’t cover signed integers, 64−bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

• Exchanging signed integers between different platforms works only when all platforms
store them in the same format.Most platforms store signed integers in two’s-
complement notation, so usually this is not an issue.

• The> or < modifiers can only be used on floating-point formats on big− or little-endian
machines. Otherwise,attempting to use them raises an exception.

• Forcing big− or little-endian byte-order on floating-point values for data exchange can
work only if all platforms use the same binary representation such asIEEE floating-
point. Even if all platforms are usingIEEE, there may still be subtle differences. Being
able to use> or < on floating-point values can be useful, but also dangerous if you don’t
know exactly what you’re doing. It is not a general way to portably store floating-point
values.

• When using> or < on a () group, this affects all types inside the group that accept
byte-order modifiers, including all subgroups.It is silently ignored for all other types.
You are not allowed to override the byte-order within a group that already has a byte-
order modifier suffix.

• Real numbers (floats and doubles) are in native machine format only. Due to the multiplicity
of floating-point formats and the lack of a standard ‘‘network’’ representation for them, no
facility for interchange has been made. This means that packed floating-point data written on
one machine may not be readable on another, even if both useIEEE floating-point arithmetic
(because the endianness of the memory representation is not part of theIEEE spec). Seealso
perlport.

If you know exactly what you’re doing, you can use the> or < modifiers to force big− or
little-endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for all numeric
calculation, converting from double into float and thence to double again loses precision, so
unpack("f", pack("f", $foo)) will not in general equal$foo .

• Pack and unpack can operate in two modes: character mode (C0 mode) where the packed
string is processed per character, and UTF−8 byte mode (U0 mode) where the packed string is
processed in its UTF−8−encoded Unicode form on a byte-by-byte basis.Character mode is
the default unless the format string starts withU. You can always switch mode mid-format

perl v5.26.0 2018-06-12 56

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

with an explicit C0 or U0 in the format. This mode remains in effect until the next mode
change, or until the end of the() group it (directly) applies to.

Using C0 to get Unicode characters while usingU0 to get non−Unicode bytes is not
necessarily obvious. Probablyonly the first of these is what you want:

$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |
perl −CS −ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'

03B1.03C9
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |

perl −CS −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |

perl −C0 −ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'
CE.B1.CF.89
$ perl −CS −E 'say "\x{3B1}\x{3C9}"' |

perl −C0 −ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
C3.8E.C2.B1.C3.8F.C2.89

Those examples also illustrate that you should not try to usepack /unpack as a substitute
for the Encode module.

• You must yourself do any alignment or padding by inserting, for example, enough"x" es
while packing. There is no way for pack andunpack to know where characters are going
to or coming from, so they handle their output and input as flat sequences of characters.

• A () group is a sub-TEMPLATE enclosed in parentheses.A group may take a repeat count
either as postfix, or forunpack , also via the/ template character. Within each repetition of
a group, positioning with@starts over at 0. Therefore, the result of

pack("@1A((@2A)@3A)", qw[X Y Z])

is the string"\0X\0\0YZ" .

• x andX accept the! modifier to act as alignment commands: they jump forward or back to
the closest position aligned at a multiple ofcount characters. For example, topack or
unpack a C structure like

struct {
char c; /* one signed, 8−bit character */
double d;
char cc[2];

}

one may need to use the templatec x ![d] d c[2] . This assumes that doubles must be
aligned to the size of double.

For alignment commands, acount of 0 is equivalent to acount of 1; both are no-ops.

• n, N, v and V accept the ! modifier to represent signed 16−/32−bit integers in
big−/little−endian order. This is portable only when all platforms sharing packed data use the
same binary representation for signed integers; for example, when all platforms use two’s-
complement representation.

• Comments can be embedded in aTEMPLATE using# through the end of line. White space
can separate pack codes from each other, but modifiers and repeat counts must follow
immediately. Breaking complex templates into individual line-by-line components, suitably
annotated, can do as much to improve legibility and maintainability of pack/unpack formats
as/x can for complicated pattern matches.

• If TEMPLATE requires more arguments thanpack is given, pack assumes additional""
arguments. IfTEMPLATE requires fewer arguments than given, extra arguments are ignored.

• Attempting to pack the special floating point valuesInf andNaN (infinity, also in negative,
and not-a-number) into packed integer values (like "L") is a fatal error. The reason for this
is that there simply isn’t any sensible mapping for these special values into integers.

perl v5.26.0 2018-06-12 57

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Examples:

$foo = pack("WWWW",65,66,67,68);
f oo eq "ABCD"
$foo = pack("W4",65,66,67,68);
s ame thing
$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
s ame thing with Unicode circled letters.
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
s ame thing with Unicode circled letters. You don't get the
UTF−8 bytes because the U at the start of the format caused
a s witch to U0−mode, so the UTF−8 bytes get joined into
c haracters
$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
f oo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
This is the UTF−8 encoding of the string in the
previous example

$foo = pack("ccxxcc",65,66,67,68);
f oo eq "AB\0\0CD"

NOTE: The examples above featuring "W" and "c" are true
only on ASCII and ASCII−derived systems such as ISO Latin 1
and UTF−8. On EBCDIC systems, the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
" \001\000\002\000" on little−endian
" \000\001\000\002" on big−endian

$foo = pack("a4","abcd","x","y","z");
" abcd"

$foo = pack("aaaa","abcd","x","y","z");
" axyz"

$foo = pack("a14","abcdefg");
" abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
a r eal struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
a s truct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
" @utmp1" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

}

$foo = pack('sx2l', 12, 34);
s hort 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);
s hort 12, zero fill to position 4, long 34
$foo eq $bar
$baz = pack('s.l', 12, 4, 34);

perl v5.26.0 2018-06-12 58

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

s hort 12, zero fill to position 4, long 34

$foo = pack('nN', 42, 4711);
pack big−endian 16− and 32−bit unsigned integers
$foo = pack('S>L>', 42, 4711);
exactly the same
$foo = pack('s<l<', −42, 4711);
pack little−endian 16− and 32−bit signed integers
$foo = pack('(sl)<', −42, 4711);
exactly the same

The same template may generally also be used inunpack .

packageNAMESPACE
packageNAMESPACE VERSION
packageNAMESPACE BLOCK
packageNAMESPACE VERSION BLOCK

Declares theBLOCK or the rest of the compilation unit as being in the given namespace. The
scope of the package declaration is either the supplied codeBLOCK or, in the absence of a
BLOCK, from the declaration itself through the end of current scope (the enclosing block, file, or
eval). That is, the forms without aBLOCK are operative through the end of the current scope,
just like themy, state , and our operators. Allunqualified dynamic identifiers in this scope will
be in the given namespace, except where overridden by anotherpackage declaration or when
they’re one of the special identifiers that qualify intomain:: , like STDOUT, ARGV, ENV, and the
punctuation variables.

A package statement affects dynamic variables only, including those you’ve usedlocal on, but
not lexically-scoped variables, which are created withmy, state , or our . Typically it would be
the first declaration in a file included byrequire or use . You can switch into a package in
more than one place, since this only determines which default symbol table the compiler uses for
the rest of that block.You can refer to identifiers in other packages than the current one by
prefixing the identifier with the package name and a double colon, as in$SomePack::var or
ThatPack::INPUT_HANDLE . If package name is omitted, themain package as assumed.
That is,$::sail is equivalent to $main::sail (as well as to$main'sail , still seen in
ancient code, mostly from Perl 4).

If VERSION is provided, package sets the$VERSION variable in the given namespace to a
version object with theVERSION provided. VERSION must be a ‘‘strict’’ style version number as
defined by the version module: a positive decimal number (integer or decimal-fraction) without
exponentiation or else a dotted-decimal v−string with a leading ’v’ character and at least three
components. You should set$VERSIONonly once per package.

See ‘‘Packages’’ in perlmod for more information about packages, modules, and classes.See
perlsub for other scoping issues.

_ _PA CKAGE_ _
A special token that returns the name of the package in which it occurs.

pipeREADHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that Perl’s
pipes useIO buffering, so you may need to set$| to flush yourWRITEHANDLE after each
command, depending on the application.

Returns true on success.

See IPC::Open2, IPC::Open3, and ‘‘Bidirectional Communication with Another Process’’ i n
perlipc for examples of such things.

On systems that support a close-on-exec flag on files, that flag is set on all newly opened file
descriptors whosefileno s are higher than the current value of$ˆF (by default 2 forSTDERR).
See ‘‘$ˆF’’ in perlvar.

perl v5.26.0 2018-06-12 59

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

popARRAY
pop Pops and returns the last value of the array, shortening the array by one element.

Returns the undefined value if the array is empty, although this may also happen at other times.If
ARRAY is omitted, pops the@ARGVarray in the main program, but the@_array in subroutines,
just likeshift .

Starting with Perl 5.14, an experimental feature allowed pop to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

posSCALAR
pos Returns the offset of where the lastm//g search left off for the variable in question ($_ is used

when the variable is not specified). This offset is in characters unless the (no-longer-
recommended)use bytes pragma is in effect, in which case the offset is in bytes. Note that 0
is a valid match offset. undef indicates that the search position is reset (usually due to match
failure, but can also be because no match has yet been run on the scalar).

pos directly accesses the location used by the regexp engine to store the offset, so assigning to
pos will change that offset, and so will also influence the\G zero-width assertion in regular
expressions. Bothof these effects take place for the next match, so you can’t affect the position
with pos during the current match, such as in(?{pos() = 5}) or s//pos() = 5/e .

Settingpos also resets thematched with zero-lengthflag, described under ‘‘Repeated Patterns
Matching a Zero-length Substring’’ in perlre.

Because a failed m//gc match doesn’t reset the offset, the return frompos won’t change either
in this case. See perlre and perlop.

print FILEHANDLE LIST
print FILEHANDLE
print LIST
print

Prints a string or a list of strings.Returns true if successful.FILEHANDLE may be a scalar
variable containing the name of or a reference to the filehandle, thus introducing one level of
indirection. (NOTE: If FILEHANDLE is a variable and the next token is a term, it may be
misinterpreted as an operator unless you interpose a+ or put parentheses around the arguments.)
If FILEHANDLE is omitted, prints to the last selected (seeselect) output handle.If LIST is
omitted, prints$_ to the currently selected output handle.To useFILEHANDLE alone to print the
content of$_ to it, you must use a bareword filehandle like FH, not an indirect one like $fh . To
set the default output handle to something other thanSTDOUT,use the select operation.

The current value of$, (if any) is printed between eachLIST item. Thecurrent value of$\ (if
any) is printed after the entireLIST has been printed. Because print takes aLIST, anything in the
LIST is evaluated in list context, including any subroutines whose return lists you pass toprint .
Be careful not to follow the print keyword with a left parenthesis unless you want the
corresponding right parenthesis to terminate the arguments to the print; put parentheses around all
arguments (or interpose a+, but that doesn’t look as good).

If you’re storing handles in an array or hash, or in general whenever you’re using any expression
more complex than a bareword handle or a plain, unsubscripted scalar variable to retrieve it, you
will have to use a block returning the filehandle value instead, in which case theLIST may not be
omitted:

print { $files[$i] } "stuff\n";
print { $OK ? *STDOUT : *STDERR } "stuff\n";

Printing to a closed pipe or socket will generate aSIGPIPEsignal. Seeperlipc for more on signal
handling.

printf FILEHANDLE FORMAT, LIST
printf FILEHANDLE
printf FORMAT, LIST
printf

Equivalent toprint FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the output
record separator) is not appended.TheFORMAT and theLIST are actually parsed as a single list.

perl v5.26.0 2018-06-12 60

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

The first argument of the list will be interpreted as theprintf format. This means that
printf(@_) will use $_[0] as the format.See sprintf for an explanation of the format
argument. Ifuse locale (includinguse locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by theLC_NUMERIClocale setting. See perllocale andPOSIX.

For historical reasons, if you omit the list,$_ is used as the format; to useFILEHANDLE without a
list, you must use a bareword filehandle like FH, not an indirect one like $fh . Howev er, this will
rarely do what you want; if$_ contains formatting codes, they will be replaced with the empty
string and a warning will be emitted if warnings are enabled. Just useprint if you want to print
the contents of$_ .

Don’t fall into the trap of using aprintf when a simpleprint would do. Theprint is more
efficient and less error prone.

prototypeFUNCTION
prototype

Returns the prototype of a function as a string (orundef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retrieve. If
FUNCTION is omitted,$_ is used.

If FUNCTION is a string starting withCORE:: , the rest is taken as a name for a Perl builtin. If the
builtin’ s arguments cannot be adequately expressed by a prototype (such assystem),
prototype returnsundef , because the builtin does not really behave like a Perl function.
Otherwise, the string describing the equivalent prototype is returned.

pushARRAY,LIST
TreatsARRAY as a stack by appending the values ofLIST to the end ofARRAY. The length of
ARRAY increases by the length ofLIST. Has the same effect as

for my $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returnsthe number of elements in the array following the completedpush .

Starting with Perl 5.14, an experimental feature allowed push to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

q/STRING/
qq/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See ‘‘Quote-Like Operators’’ in perlop.

qr/STRING/
Regexp-like quote. See‘‘ Regexp Quote-Like Operators’’ in perlop.

quotemetaEXPR
quotemeta

Returns the value ofEXPR with all theASCII non−‘‘word’’ characters backslashed. (That is, all
ASCII characters not matching/[A−Za−z_0−9]/ will be preceded by a backslash in the
returned string, regardless of any locale settings.) This is the internal function implementing the
\Q escape in double-quoted strings. (See below for the behavior on non-ASCII code points.)

If EXPR is omitted, uses$_ .

quotemeta (and\Q ... \E) are useful when interpolating strings into regular expressions, because
by default an interpolated variable will be considered a mini-regular expression. For example:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{$substring}{big bad wolf};

Will cause$sentence to become'The big bad wolf jumped over...' .

On the other hand:

perl v5.26.0 2018-06-12 61

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =˜ s{\Q$substring\E}{big bad wolf};

Or:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
my $quoted_substring = quotemeta($substring);
$sentence =˜ s{$quoted_substring}{big bad wolf};

Will both leave the sentence as is.Normally, when accepting literal string input from the user,
quotemeta or \Q must be used.

In Perl v5.14, all non-ASCII characters are quoted in non−UTF−8−encoded strings, but not quoted
in UTF−8 strings.

Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for quoting non-ASCII characters;
the quoting ofASCII characters is unchanged.

Also unchanged is the quoting of non−UTF−8 strings when outside the scope of ause
feature 'unicode_strings' , which is to quote all characters in the upper Latin1 range.
This provides complete backwards compatibility for old programs which do not use Unicode.
(Note thatunicode_strings is automatically enabled within the scope of auseÂv5.12 or
greater.)

Within the scope ofuse locale , all non-ASCII Latin1 code points are quoted whether the
string is encoded asUTF−8 or not. As mentioned above, locale does not affect the quoting of
ASCII-range characters. This protects against those locales where characters such as"|" are
considered to be word characters.

Otherwise, Perl quotes non-ASCII characters using an adaptation from Unicode (see
<http://www.unicode.org/reports/tr31/>). Theonly code points that are quoted are those that have
any of the Unicode properties: Pattern_Syntax, Pattern_White_Space, White_Space,
Default_Ignorable_Code_Point, or General_Category=Control.

Of these properties, the two important ones are Pattern_Syntax and Pattern_White_Space. They
have been set up by Unicode for exactly this purpose of deciding which characters in a regular
expression pattern should be quoted. No character that can be in an identifier has these properties.

Perl promises, that if we ever add regular expression pattern metacharacters to the dozen already
defined (\ | () [{ ˆ $ * + ? .), that we will only use ones that have the
Pattern_Syntax property. Perl also promises, that if we ever add characters that are considered to
be white space in regular expressions (currently mostly affected by/x), they will all have the
Pattern_White_Space property.

Unicode promises that the set of code points that have these two properties will never change, so
something that is not quoted in v5.16 will never need to be quoted in any future Perl release.(Not
all the code points that match Pattern_Syntax have actually had characters assigned to them; so
there is room to grow, but they are quoted whether assigned or not. Perl, of course, would never
use an unassigned code point as an actual metacharacter.)

Quoting characters that have the other 3 properties is done to enhance the readability of the regular
expression and not because they actually need to be quoted for regular expression purposes
(characters with the White_Space property are likely to be indistinguishable on the page or screen
from those with the Pattern_White_Space property; and the other two properties contain non-
printing characters).

randEXPR
rand

Returns a random fractional number greater than or equal to0 and less than the value ofEXPR.
(EXPR should be positive.) If EXPR is omitted, the value 1 is used. Currently EXPR with the
value 0 is also special-cased as1 (this was undocumented before Perl 5.8.0 and is subject to
change in future versions of Perl).Automatically callssrand unlesssrand has already been
called. Seealsosrand .

perl v5.26.0 2018-06-12 62

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Apply int to the value returned byrand if you want random integers instead of random
fractional numbers.For example,

int(rand(10))

returns a random integer between0 and9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then your
version of Perl was probably compiled with the wrong number ofRANDBITS.)

rand is not cryptographically secure. You should not rely on it in security-sensitive
situations. As of this writing, a number of third-partyCPAN modules offer random number
generators intended by their authors to be cryptographically secure, including: Data::Entropy,
Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

readFILEHANDLE,SCALAR,LENGTH,OFFSET
readFILEHANDLE,SCALAR,LENGTH

Attempts to readLENGTH characters of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of characters actually read,0 at end of file, or undef if there
was an error (in the latter case$! is also set).SCALAR will be grown or shrunk so that the last
character actually read is the last character of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negative OFFSETspecifies placement at that many characters counting backwards
from the end of the string.A positive OFFSETgreater than the length ofSCALAR results in the
string being padded to the required size with"\0" bytes before the result of the read is appended.

The call is implemented in terms of either Perl’s or your system’s native fread(3) library function.
To get a trueread(2) system call, see sysread.

Note thecharacters: depending on the status of the filehandle, either (8−bit) bytes or characters
are read. By default, all filehandles operate on bytes, but for example if the filehandle has been
opened with the:utf8 I/O layer (seeopen , and the open pragma), the I/O will operate on
UTF8−encoded Unicode characters, not bytes. Similarly for the:encoding layer: in that case
pretty much any characters can be read.

readdirDIRHANDLE
Returns the next directory entry for a directory opened byopendir . If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, returns the undefined
value in scalar context and the empty list in list context.

If you’re planning to filetest the return values out of areaddir , you’d better prepend the
directory in question. Otherwise, because we didn’t chdir there, it would have been testing the
wrong file.

opendir(my $dh, $some_dir) || die "Can't opendir $some_dir: $!";
my @dots = grep { /ˆ\./ && −f "$some_dir/$_" } readdir($dh);
closedir $dh;

As of Perl 5.12 you can use a barereaddir in a while loop, which will set$_ on every
iteration.

opendir(my $dh, $some_dir) || die "Can't open $some_dir: $!";
while (readdir $dh) {

print "$some_dir/$_\n";
}
closedir $dh;

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious failures, put this sort of thing at the top of your file to signal that your code will work
onlyon Perls of a recent vintage:

use 5.012; # so readdir assigns to $_ in a lone while test

readlineEXPR

perl v5.26.0 2018-06-12 63

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

readline
Reads from the filehandle whose typeglob is contained inEXPR (or from *ARGV if EXPR is not
provided). Inscalar context, each call reads and returns the next line until end-of-file is reached,
whereupon the subsequent call returnsundef . In list context, reads until end-of-file is reached
and returns a list of lines. Note that the notion of ‘‘line’ ’ used here is whatever you may have
defined with$/ (or $INPUT_RECORD_SEPARATORin English). See ‘‘$/’’ in perlvar.

When$/ is set toundef , whenreadline is in scalar context (i.e., file slurp mode), and when
an empty file is read, it returns'' the first time, followed byundef subsequently.

This is the internal function implementing the<EXPR>operator, but you can use it directly. The
<EXPR>operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

my $line = <STDIN>;
my $line = readline(STDIN); # s ame thing

If readline encounters an operating system error, $! will be set with the corresponding error
message. Itcan be helpful to check$! when you are reading from filehandles you don’t trust,
such as a tty or a socket. Thefollowing example uses the operator form ofreadline and dies if
the result is not defined.

while (! eof($fh)) {
defined($_ = readline $fh) or die "readline failed: $!";
...

}

Note that you have can’t handlereadline errors that way with theARGVfilehandle. Inthat
case, you have to open each element of@ARGVyourself sinceeof handlesARGVdifferently.

foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";

while (! eof($fh)) {
defined($_ = readline $fh)

or die "readline failed for $arg: $!";
...

}
}

readlinkEXPR
readlink

Returns the value of a symbolic link, if symbolic links are implemented. If not, raises an
exception. If there is a system error, returns the undefined value and sets$! (errno). If EXPR is
omitted, uses$_ .

Portability issues: ‘‘readlink’’ in perlport.

readpipeEXPR
readpipe

EXPR is executed as a system command. The collected standard output of the command is
returned. Inscalar context, it comes back as a single (potentially multi-line) string. In list context,
returns a list of lines (however you’ve defined lines with$/ (or $INPUT_RECORD_SEPARATOR
in English)). This is the internal function implementing theqx/EXPR/ operator, but you can use
it directly. Theqx/EXPR/ operator is discussed in more detail in ‘‘I/O Operators’’ in perlop. If
EXPR is omitted, uses$_ .

recvSOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attemptsto receive LENGTH characters of data into variable
SCALAR from the specifiedSOCKET filehandle. SCALAR will be grown or shrunk to the length
actually read.Takes the same flags as the system call of the same name. Returns the address of
the sender ifSOCKET’s protocol supports this; returns an empty string otherwise. If there’s an
error, returns the undefined value. Thiscall is actually implemented in terms of therecvfrom(2)
system call. See ‘‘UDP: Message Passing’’ in perlipc for examples.

Note thecharacters: depending on the status of the socket, either (8−bit) bytes or characters are

perl v5.26.0 2018-06-12 64

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

received. By default all sockets operate on bytes, but for example if the socket has been changed
usingbinmode to operate with the:encoding(UTF−8) I/O layer (see the open pragma), the
I/O will operate on UTF8−encoded Unicode characters, not bytes.Similarly for the:encoding
layer: in that case pretty much any characters can be read.

redoLABEL
redoEXPR
redo

The redo command restarts the loop block without evaluating the conditional again. The
continue block, if any, is not executed. If the LABEL is omitted, the command refers to the
innermost enclosing loop.The redo EXPR form, available starting in Perl 5.18.0, allows a label
name to be computed at run time, and is otherwise identical toredo LABEL . Programs that
want to lie to themselves about what was just input normally use this command:

a s impleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {

my $front = $_;
while (<STDIN>) {

if (/}/) { # end of comment?
s|ˆ|$front\{|;
redo LINE;

}
}

}
print;

}

redo cannot be used to retry a block that returns a value such aseval {} , sub {} , or do {} ,
and should not be used to exit agrep or mapoperation.

Note that a block by itself is semantically identical to a loop that executes once.Thus redo
inside such a block will effectively turn it into a looping construct.

See alsocontinue for an illustration of howlast , next , and redo work.

Unlike most named operators, this has the same precedence as assignment. It is also exempt from
the looks-like-a-function rule, soredo ("foo")."bar" will cause ‘‘bar’’ to be part of the
argument toredo .

ref EXPR
ref Returns a non-empty string ifEXPR is a reference, the empty string otherwise.If EXPR is not

specified,$_ will be used. The value returned depends on the type of thing the reference is a
reference to.

Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp

You can think ofref as atypeof operator.

perl v5.26.0 2018-06-12 65

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}

The return valueLVALUE indicates a reference to an lvalue that is not a variable. You get this
from taking the reference of function calls like pos or substr . VSTRING is returned if the
reference points to a version string.

The resultRegexp indicates that the argument is a regular expression resulting fromqr// .

If the referenced object has been blessed into a package, then that package name is returned
instead. Butdon’t use that, as it’s now considered ‘‘bad practice’’. For one reason, an object
could be using a class calledRegexp or IO , or even HASH. Also, ref doesn’t take into account
subclasses, likeisa does.

Instead, useblessed (in the Scalar::Util module) for boolean checks,isa for specific class
checks andreftype (also from Scalar::Util) for type checks.(See perlobj for details and a
blessed /isa example.)

See also perlref.

renameOLDNAME,NEWNAME
Changes the name of a file; an existing fileNEWNAME will be clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system implementation.For example,
it will usually not work across file system boundaries, even though the systemmv command
sometimes compensates for this. Other restrictions include whether it works on directories, open
files, or pre-existing files. Check perlport and either therename(2) manpage or equivalent system
documentation for details.

For a platform independentmove function look at the File::Copy module.

Portability issues: ‘‘rename’’ in perlport.

requireVERSION
requireEXPR
require

Demands a version of Perl specified byVERSION,or demands some semantics specified byEXPR
or by$_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compared to$] , or a
literal of the form v5.6.1, which will be compared to$ˆV (or $PERL_VERSIONin English). An
exception is raised ifVERSION is greater than the version of the current Perl interpreter. Compare
with use , which can do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl that do not support this syntax.The
equivalent numeric version should be used instead.

require v5.6.1; # r un time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards

compatibility

Otherwise,require demands that a library file be included if it hasn’t already been included.
The file is included via the do-FILE mechanism, which is essentially just a variety ofeval with
the caveat that lexical variables in the invoking script will be invisible to the included code.If it
were implemented in pure Perl, it would have semantics similar to the following:

use Carp 'croak';
use version;

perl v5.26.0 2018-06-12 66

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sub require {
my ($filename) = @_;
if (my $version = eval { version−>parse($filename) }) {

if ($version > $ˆV) {
my $vn = $version−>normal;
croak "Perl $vn required−−this is only $ˆV, stopped";

}
return 1;

}

if (exists $INC{$filename}) {
return 1 if $INC{$filename};
croak "Compilation failed in require";

}

foreach $prefix (@INC) {
if (ref($prefix)) {

#... do other stuff − see text below
}
(see text below about possible appending of .pmc
s uffix to $filename)
my $realfilename = "$prefix/$filename";
next if ! −e $realfilename || −d _ || −b _;
$INC{$filename} = $realfilename;
my $result = do($realfilename);

but run in caller's namespace

if (!defined $result) {
$INC{$filename} = undef;
croak $@ ? "$@Compilation failed in require"

: " Can't locate $filename: $!\n";
}
if (!$result) {

delete $INC{$filename};
croak "$filename did not return true value";

}
$! = 0;
return $result;

}
croak "Can't locate $filename in \@INC ...";

}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successful execution of any initialization
code, so it’s customary to end such a file with1; unless you’re sure it’ll return true otherwise.
But it’s better just to put the1; , in case you add more statements.

If EXPR is a bareword, require assumes a.pmextension and replaces:: with / in the filename
for you, to make it easy to load standard modules.This form of loading of modules does not risk
altering your namespace.

In other words, if you try this:

require Foo::Bar; # a s plendid bareword

The require function will actually look for theFoo/Bar.pmfile in the directories specified in the
@INCarray.

But if you try this:

perl v5.26.0 2018-06-12 67

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my $class = 'Foo::Bar';
require $class; # $class is not a bareword

#or
require "Foo::Bar"; # not a bareword because of the ""

The require function will look for theFoo::Bar file in the@INC array and will complain about
not findingFoo::Bar there. Inthis case you can do:

eval "require $class";

Now that you understand how require looks for files with a bareword argument, there is a little
extra functionality going on behind the scenes.Beforerequire looks for a.pmextension, it will
first look for a similar filename with a.pmcextension. Ifthis file is found, it will be loaded in
place of any file ending in a.pmextension.

You can also insert hooks into the import facility by putting Perl code directly into the@INC
array. There are three forms of hooks: subroutine references, array references, and blessed
objects.

Subroutine references are the simplest case. When the inclusion system walks through@INCand
encounters a subroutine, this subroutine gets called with two parameters, the first a reference to
itself, and the second the name of the file to be included (e.g.,Foo/Bar.pm). The subroutine
should return either nothing or else a list of up to four values in the following order:

1. A reference to a scalar, containing any initial source code to prepend to the file or generator
output.

2. A fi lehandle, from which the file will be read.

3. A reference to a subroutine. If there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the line into$_ and returning 1,
then finally at end of file returning 0. If there is a filehandle, then the subroutine will be
called to act as a simple source filter, with the line as read in$_ . Again, return 1 for each
valid line, and 0 after all lines have been returned.

4. Optional state for the subroutine. The state is passed in as$_[1] . A reference to the
subroutine itself is passed in as$_[0] .

If an empty list,undef , or nothing that matches the first 3 values above is returned, then
require looks at the remaining elements of@INC. Note that this filehandle must be a real
filehandle (strictly a typeglob or reference to a typeglob, whether blessed or unblessed); tied
filehandles will be ignored and processing will stop there.

If the hook is an array reference, its first element must be a subroutine reference.This subroutine
is called as above, but the first parameter is the array reference.This lets you indirectly pass
arguments to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub
...

}

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {

my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my (undef, @parameters) = @$arrayref;
...

}

If the hook is an object, it must provide anINC method that will be called as above, the first
parameter being the object itself. (Note that you must fully qualify the sub’s name, as unqualified

perl v5.26.0 2018-06-12 68

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

INC is always forced into packagemain .) Hereis a typical code layout:

In F oo.pm
package Foo;
sub new { ... }
sub Foo::INC {

my ($self, $filename) = @_;
...

}

In t he main program
push @INC, Foo−>new(...);

These hooks are also permitted to set the%INCentry corresponding to the files they hav eloaded.
See ‘‘%INC’’ in perlvar.

For a yet-more-powerful import facility, seeuse and perlmod.

resetEXPR
reset

Generally used in acontinue block at the end of a loop to clear variables and reset
m?pattern? searches so that they work again. Theexpression is interpreted as a list of single
characters (hyphens allowed for ranges). All variables and arrays beginning with one of those
letters are reset to their pristine state.If the expression is omitted, one-match searches
(m?pattern?) are reset to match again. Only resets variables or searches in the current
package. Always returns 1. Examples:

reset 'X'; # r eset all X variables
reset 'a−z'; # r eset lower case variables
reset; # just reset m?one−time? searches

Resetting"A−Z" is not recommended because you’ll wipe out your@ARGVand@INCarrays and
your %ENVhash. Resetsonly package variables; lexical variables are unaffected, but they clean
themselves up on scope exit anyway, so you’ll probably want to use them instead. Seemy.

returnEXPR
return

Returns from a subroutine,eval , do FILE , sort block or regex eval block (but not agrep or
map block) with the value given in EXPR. Evaluation ofEXPR may be in list, scalar, or void
context, depending on how the return value will be used, and the context may vary from one
execution to the next (seewantarray). If no EXPR is given, returns an empty list in list context,
the undefined value in scalar context, and (of course) nothing at all in void context.

(In the absence of an explicit return , a subroutine,eval , or do FILE automatically returns
the value of the last expression evaluated.)

Unlike most named operators, this is also exempt from the looks-like-a-function rule, soreturn
("foo")."bar" will cause"bar" to be part of the argument toreturn .

reverseLIST
In list context, returns a list value consisting of the elements ofLIST in the opposite order. In
scalar context, concatenates the elements ofLIST and returns a string value with all characters in
the opposite order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dlrow ,", "olleH"; # Hello, world

Used without arguments in scalar context,reverse reverses$_ .

$_ = "dlrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world

Note that reversing an array to itself (as in@a = reverse @a) will preserve non-existent
elements whenever possible; i.e., for non-magical arrays or for tied arrays withEXISTS and

perl v5.26.0 2018-06-12 69

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

DELETEmethods.

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted hash.
Also, this has to unwind one hash and build a whole new one, which may take some time on a
large hash, such as from aDBM file.

my %by_name = reverse %by_address; # I nvert the hash

rewinddirDIRHANDLE
Sets the current position to the beginning of the directory for thereaddir routine on
DIRHANDLE.

Portability issues: ‘‘rewinddir’’ in perlport.

rindexSTR,SUBSTR,POSITION
rindexSTR,SUBSTR

Works just like index except that it returns the position of thelast occurrence ofSUBSTRin STR.
If POSITIONis specified, returns the last occurrence beginning at or before that position.

rmdir FILENAME
rmdir

Deletes the directory specified byFILENAME if that directory is empty. If it succeeds it returns
true; otherwise it returns false and sets$! (errno). IfFILENAME is omitted, uses$_ .

To remove a directory tree recursively (rm −rf on Unix) look at thermtree function of the
File::Path module.

s/// The substitution operator. See ‘‘Regexp Quote-Like Operators’’ in perlop.

sayFILEHANDLE LIST
sayFILEHANDLE
sayLIST
say Just like print , but implicitly appends a newline. say LIST is simply an abbreviation for{

local $\ = "\n"; print LIST } . To use FILEHANDLE without a LIST to print the
contents of$_ to it, you must use a bareword filehandle likeFH, not an indirect one like$fh .

say is available only if the"say" feature is enabled or if it is prefixed withCORE:: . The
"say" feature is enabled automatically with ause v5.10 (or higher) declaration in the current
scope.

scalarEXPR
ForcesEXPR to be interpreted in scalar context and returns the value ofEXPR.

my @counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context because in
practice, this is never needed. If you really wanted to do so, however, you could use the
construction@{[(some expression)]} , but usually a simple(some expression)
suffices.

Becausescalar is a unary operator, if you accidentally use a parenthesized list for theEXPR,
this behaves as a scalar comma expression, evaluating all but the last element in void context and
returning the final element evaluated in scalar context. Thisis seldom what you want.

The following single statement:

print uc(scalar(foo(), $bar)), $baz;

is the moral equivalent of these two:

foo();
print(uc($bar), $baz);

See perlop for more details on unary operators and the comma operator, and perldata for details on
evaluating a hash in scalar contex.

perl v5.26.0 2018-06-12 70

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

seekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE’s position, just like the fseek(3) call of Cstdio . FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values forWHENCEare0 to set the
new position in bytesto POSITION; 1 to set it to the current position plusPOSITION; and 2 to set it
to EOF plus POSITION,typically negative. For WHENCE you may use the constantsSEEK_SET,
SEEK_CUR, and SEEK_END(start of the file, current position, end of the file) from the Fcntl
module. Returns1 on success, false otherwise.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the:encoding(UTF−8) I/O layer), theseek , tell , and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

If you want to position the file forsysread or syswrite , don’t useseek , because buffering
makes its effect on the file’s read-write position unpredictable and non-portable.Usesysseek
instead.

Due to the rules and rigors ofANSI C, on some systems you have to do a seek whenever you
switch between reading and writing. Amongst other things, this may have the effect of calling
stdio’sclearerr(3). A WHENCEof 1 (SEEK_CUR) is useful for not moving the file position:

seek($fh, 0, 1);

This is also useful for applications emulatingtail −f . Once you hitEOFon your read and then
sleep for a while, you (probably) have to stick in a dummyseek to reset things.The seek
doesn’t change the position, but itdoesclear the end-of-file condition on the handle, so that the
nextreadline FILE makes Perl try again to read something. (We hope.)

If that doesn’t work (some I/O implementations are particularly cantankerous), you might need
something like this:

for (;;) {
for ($curpos = tell($fh); $_ = readline($fh);

$curpos = tell($fh)) {
s earch for some stuff and put it into files

}
sleep($for_a_while);
seek($fh, $curpos, 0);

}

seekdirDIRHANDLE,POS
Sets the current position for thereaddir routine onDIRHANDLE. POSmust be a value returned
by telldir . seekdir also has the same caveats about possible directory compaction as the
corresponding system library routine.

selectFILEHANDLE
select

Returns the currently selected filehandle.If FILEHANDLE is supplied, sets the new current default
filehandle for output. This has two effects: first, awrite or aprint without a filehandle default
to this FILEHANDLE. Second, references to variables related to output will refer to this output
channel.

For example, to set the top-of-form format for more than one output channel, you might do the
following:

select(REPORT1);
$ˆ = 'report1_top';
select(REPORT2);
$ˆ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:

my $oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write
the last example as:

perl v5.26.0 2018-06-12 71

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

STDERR−>autoflush(1);

(Prior to Perl version 5.14, you have to use IO::Handle; explicitly first.)

Portability issues: ‘‘select’’ in perlport.

selectRBITS,WBITS,EBITS,TIMEOUT
This calls theselect(2) syscall with the bit masks specified, which can be constructed using
fileno andvec , along these lines:

my $rin = my $win = my $ein = '';
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

If you want to select on many filehandles, you may wish to write a subroutine like this:

sub fhbits {
my @fhlist = @_;
my $bits = "";
for my $fh (@fhlist) {

vec($bits, fileno($fh), 1) = 1;
}
return $bits;

}
my $rin = fhbits(*STDIN, $tty, $mysock);

The usual idiom is:

my ($nfound, $timeleft) =
select(my $rout = $rin, my $wout = $win, my $eout = $ein,

$timeout);

or to block until something becomes ready just do this

my $nfound =
select(my $rout = $rin, my $wout = $win, my $eout = $ein, undef);

Most systems do not bother to return anything useful in$timeleft , so calling select in
scalar context just returns$nfound .

Any of the bit masks can also beundef . The timeout, if specified, is in seconds, which may be
fractional. Note:not all implementations are capable of returning the$timeleft . If not, they
always return$timeleft equal to the supplied$timeout .

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whetherselect gets restarted after signals (say, SIGALRM) is implementation-
dependent. Seealso perlport for notes on the portability ofselect .

On error,select behaves just likeselect(2): it returns−1 and sets$! .

On some Unixes,select(2) may report a socket file descriptor as ‘‘ready for reading’’ even when
no data is available, and thus any subsequentread would block. This can be avoided if you
always useO_NONBLOCKon the socket. Seeselect(2) andfcntl (2) for further details.

The standardIO::Select module provides a user-friendlier interface toselect , mostly
because it does all the bit-mask work for you.

WARNING : One should not attempt to mix buffered I/O (like read or readline) with
select , except as permitted byPOSIX, and even then only onPOSIX systems. You have to use
sysread instead.

Portability issues: ‘‘select’’ in perlport.

perl v5.26.0 2018-06-12 72

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

semctlID,SEMNUM,CMD,ARG
Calls the System VIPC functionsemctl(2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT or GETALL, thenARG must be a
variable that will hold the returned semid_ds structure or semaphore value array. Returns like
ioctl : the undefined value for error, "0 but true " for zero, or the actual return value
otherwise. TheARG must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem) . See also ‘‘SysV IPC’’ in perlipc and the documentation for
IPC::SysV andIPC::Semaphore .

Portability issues: ‘‘semctl’’ in perlport.

semgetKEY,NSEMS,FLAGS
Calls the System VIPC functionsemget(2). Returnsthe semaphore id, or the undefined value on
error. See also ‘‘SysV IPC’’ in perlipc and the documentation forIPC::SysV and
IPC::Semaphore .

Portability issues: ‘‘semget’’ in perlport.

semopKEY,OPSTRING
Calls the System VIPC function semop(2) for semaphore operations such as signalling and
waiting. OPSTRINGmust be a packed array of semop structures. Each semop structure can be
generated with pack("s!3", $semnum, $semop, $semflag) . The length of
OPSTRINGimplies the number of semaphore operations. Returns true if successful, false on error.
As an example, the following code waits on semaphore$semnumof semaphore id$semid:

my $semop = pack("s!3", $semnum, −1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace−1 with 1. See also ‘‘SysV IPC’’ in perlipc and the
documentation forIPC::SysV andIPC::Semaphore .

Portability issues: ‘‘semop’’ in perlport.

sendSOCKET,MSG,FLAGS,TO
sendSOCKET,MSG,FLAGS

Sends a message on a socket. Attemptsto send the scalarMSG to theSOCKETfilehandle. Takes
the same flags as the system call of the same name. On unconnected sockets, you must specify a
destination tosend to, in which case it does asendto(2) syscall. Returns the number of characters
sent, or the undefined value on error. The sendmsg(2) syscall is currently unimplemented.See
‘‘ UDP: Message Passing’’ in perlipc for examples.

Note thecharacters: depending on the status of the socket, either (8−bit) bytes or characters are
sent. Bydefault all sockets operate on bytes, but for example if the socket has been changed using
binmode to operate with the:encoding(UTF−8) I/O layer (seeopen , or the open pragma),
the I/O will operate onUTF−8 encoded Unicode characters, not bytes. Similarly for the
:encoding layer: in that case pretty much any characters can be sent.

setpgrpPID,PGRP
Sets the current process group for the specifiedPID, 0 for the current process. Raises an exception
when used on a machine that doesn’t implementPOSIX setpgid(2) or BSD setpgrp(2). If the
arguments are omitted, it defaults to0,0 . Note that theBSD 4.2version of setpgrp does not
accept any arguments, so onlysetpgrp(0,0) is portable. See alsoPOSIX::setsid() .

Portability issues: ‘‘setpgrp’’ in perlport.

setpriorityWHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (Seesetpriority(2).) Raisesan
exception when used on a machine that doesn’t implementsetpriority(2).

Portability issues: ‘‘setpriority’’ in perlport.

setsockoptSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested.Returnsundef on error. Use integer constants provided by the
Socket module for LEVEL and OPNAME. Values for LEVEL can also be obtained from

perl v5.26.0 2018-06-12 73

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

getprotobyname.OPTVAL might either be a packed string or an integer. An integerOPTVAL is
shorthand for pack(‘‘i’’,OPTVAL).

An example disabling Nagle’s algorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

Portability issues: ‘‘setsockopt’’ in perlport.

shift ARRAY
shift

Shifts the first value of the array off and returns it, shortening the array by 1 and moving
ev erything down. If there are no elements in the array, returns the undefined value. If ARRAY is
omitted, shifts the@_array within the lexical scope of subroutines and formats, and the@ARGV
array outside a subroutine and also within the lexical scopes established by theeval STRING ,
BEGIN {} , INIT {} , CHECK {} , UNITCHECK {} , andEND {} constructs.

Starting with Perl 5.14, an experimental feature allowed shift to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

See alsounshift , push , and pop . shift andunshift do the same thing to the left end of
an array thatpop andpush do to the right end.

shmctlID,CMD,ARG
Calls the System VIPC function shmctl.You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT, thenARG must be a variable
that will hold the returnedshmid_ds structure. Returnslike ioctl: undef for error; "0 but true"
for zero; and the actual return value otherwise.See also ‘‘SysV IPC’’ in perlipc and the
documentation forIPC::SysV .

Portability issues: ‘‘shmctl’’ in perlport.

shmgetKEY,SIZE,FLAGS
Calls the System VIPC function shmget. Returns the shared memory segment id, orundef on
error. See also ‘‘SysVIPC’’ in perlipc and the documentation forIPC::SysV .

Portability issues: ‘‘shmget’’ in perlport.

shmreadID,VAR,POS,SIZE
shmwriteID,STRING,POS,SIZE

Reads or writes the System V shared memory segmentID starting at positionPOSfor sizeSIZE by
attaching to it, copying in/out, and detaching from it. When reading,VAR must be a variable that
will hold the data read. When writing, ifSTRING is too long, onlySIZE bytes are used; ifSTRING
is too short, nulls are written to fill outSIZE bytes. Returntrue if successful, false on error.
shmread taints the variable. Seealso ‘‘SysV IPC’’ in perlipc and the documentation for
IPC::SysV and theIPC::Shareable module fromCPAN.

Portability issues: ‘‘shmread’’ in perlport and ‘‘shmwrite’’ in perlport.

shutdownSOCKET,HOW
Shuts down a socket connection in the manner indicated byHOW, which has the same
interpretation as in the syscall of the same name.

shutdown($socket, 0); # I /we have stopped reading data
shutdown($socket, 1); # I /we have stopped writing data
shutdown($socket, 2); # I /we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done writing but not done
reading, or vice versa. It’s also a more insistent form of close because it also disables the file
descriptor in any forked copies in other processes.

Returns1 for success; on error, returnsundef if the first argument is not a valid filehandle, or
returns0 and sets$! for any other failure.

perl v5.26.0 2018-06-12 74

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sin EXPR
sin Returns the sine ofEXPR(expressed in radians). IfEXPR is omitted, returns sine of$_ .

For the inverse sine operation, you may use theMath::Trig::asin function, or use this
relation:

sub asin { atan2($_[0], sqrt(1 − $_[0] * $_[0])) }

sleepEXPR
sleep

Causes the script to sleep for (integer)EXPR seconds, or forever if no argument is given. Returns
the integer number of seconds actually slept.

May be interrupted if the process receives a signal such asSIGALRM.

eval {
local $SIG{ALRM} = sub { die "Alarm!\n" };
sleep;

};
die $@ unless $@ eq "Alarm!\n";

You probably cannot mixalarm andsleep calls, becausesleep is often implemented using
alarm .

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds. Most modern systems always sleep the full amount.They may appear
to sleep longer than that, however, because your process might not be scheduled right away in a
busy multitasking system.

For delays of finer granularity than one second, the Time::HiRes module (fromCPAN, and starting
from Perl 5.8 part of the standard distribution) providesusleep . You may also use Perl’s four-
argument version ofselect leaving the first three arguments undefined, or you might be able to
use thesyscall interface to accesssetitimer(2) if your system supports it. See perlfaq8 for
details.

See also thePOSIXmodule’spause function.

socketSOCKET,DOMAIN,TYPE,PROT OCOL
Opens a socket of the specified kind and attaches it to filehandleSOCKET. DOMAIN, TYPE, and
PROT OCOL are specified the same as for the syscall of the same name.You shoulduse Socket
first to get the proper definitions imported. See the examples in ‘‘Sockets: Client/Server
Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of$ˆF . See ‘‘$ˆF’’ in perlvar.

socketpairSOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type.DOMAIN,
TYPE, and PROT OCOL are specified the same as for the syscall of the same name.If
unimplemented, raises an exception. Returnstrue if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of$ˆF . See ‘‘$ˆF’’ in perlvar.

Some systems definepipe in terms ofsocketpair , in which a call topipe($rdr, $wtr)
is essentially:

use Socket;
socketpair(my $rdr, my $wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown($rdr, 1); # no more writing for reader
shutdown($wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use.Perl 5.8 and later will emulate socketpair usingIP
sockets to localhost if your system implements sockets but not socketpair.

Portability issues: ‘‘socketpair’’ in perlport.

perl v5.26.0 2018-06-12 75

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sortSUBNAME LIST
sortBLOCK LIST
sortLIST

In list context, this sorts theLIST and returns the sorted list value. Inscalar context, the behaviour
of sort is undefined.

If SUBNAME or BLOCK is omitted,sort s in standard string comparison order. If SUBNAME is
specified, it gives the name of a subroutine that returns an integer less than, equal to, or greater
than0, depending on how the elements of the list are to be ordered.(The<=> andcmp operators
are extremely useful in such routines.)SUBNAME may be a scalar variable name (unsubscripted),
in which case the value provides the name of (or a reference to) the actual subroutine to use.In
place of aSUBNAME, you can provide aBLOCK as an anonymous, in-line sort subroutine.

If the subroutine’s prototype is($$) , the elements to be compared are passed by reference in@_,
as for a normal subroutine.This is slower than unprototyped subroutines, where the elements to
be compared are passed into the subroutine as the package global variables$a and $b (see
example below).

If the subroutine is anXSUB, the elements to be compared are pushed on to the stack, the way
arguments are usually passed to XSUBs.$a and$b are not set.

The values to be compared are always passed by reference and should not be modified.

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described in perlsyn or withgoto .

When use locale (but not use locale ':not_characters') is in effect, sort
LIST sortsLIST according to the current collation locale. See perllocale.

sort returns aliases into the original list, much as a for loop’s index variable aliases the list
elements. Thatis, modifying an element of a list returned bysort (for example, in aforeach ,
map or grep) actually modifies the element in the original list. This is usually something to be
avoided when writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not stable
andcould go quadratic.(A stablesort preserves the input order of elements that compare equal.
Although quicksort’s run time is O(NlogN) when averaged over all arrays of length N, the time
can be O(N**2),quadraticbehavior, for some inputs.)In 5.7, the quicksort implementation was
replaced with a stable mergesort algorithm whose worst-case behavior is O(NlogN).But
benchmarks indicated that for some inputs, on some platforms, the original quicksort was faster.
5.8 has a sort pragma for limited control of the sort. Its rather blunt control of the underlying
algorithm may not persist into future Perls, but the ability to characterize the input or output in
implementation independent ways quite probably will.

Examples:

s ort lexically
my @articles = sort @files;

s ame thing, but with explicit sort routine
my @articles = sort {$a cmp $b} @files;

now case−insensitively
my @articles = sort {fc($a) cmp fc($b)} @files;

s ame thing in reversed order
my @articles = sort {$b cmp $a} @files;

s ort numerically ascending
my @articles = sort {$a <=> $b} @files;

s ort numerically descending
my @articles = sort {$b <=> $a} @files;

perl v5.26.0 2018-06-12 76

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

t his sorts the %age hash by value instead of key
using an in−line function
my @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

s ort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}
my @sortedclass = sort byage @class;

sub backwards { $b cmp $a }
my @harry = qw(dog cat x Cain Abel);
my @george = qw(gone chased yz Punished Axed);
print sort @harry;

prints AbelCaincatdogx
print sort backwards @harry;

prints xdogcatCainAbel
print sort @george, 'to', @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

i nefficiently sort by descending numeric compare using
t he first integer after the first = sign, or the
whole record case−insensitively otherwise

my @new = sort {
($b =˜ /=(\d+)/)[0] <=> ($a =˜ /=(\d+)/)[0]

||
fc($a) cmp fc($b)

} @old;

s ame thing, but much more efficiently;
we'll build auxiliary indices instead
f or speed
my (@nums, @caps);
for (@old) {

push @nums, (/=(\d+)/ ? $1 : undef);
push @caps, fc($_);

}

my @new = @old[sort {
$nums[$b] <=> $nums[$a]

||
$caps[$a] cmp $caps[$b]

} 0 ..$#old
];

s ame thing, but without any temps
my @new = map { $_−>[0] }

sort { $b−>[1] <=> $a−>[1]
||

$a−>[2] cmp $b−>[2]
} map { [$_, /=(\d+)/, fc($_)] } @old;

using a prototype allows you to use any comparison subroutine
as a s ort subroutine (including other package's subroutines)
package Other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a a nd $b are

not set here
package main;

perl v5.26.0 2018-06-12 77

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my @new = sort Other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable';
my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

f orce use of mergesort (not portable outside Perl 5.8)
use sort '_mergesort'; # note discouraging _
my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a function.If you want to
sort the list returned by the function callfind_records(@key) , you can use:

my @contact = sort { $a cmp $b } find_records @key;
my @contact = sort +find_records(@key);
my @contact = sort &find_records(@key);
my @contact = sort(find_records(@key));

If instead you want to sort the array@keywith the comparison routinefind_records() then
you can use:

my @contact = sort { find_records() } @key;
my @contact = sort find_records(@key);
my @contact = sort(find_records @key);
my @contact = sort(find_records (@key));

$a and $b are set as package globals in the package thesort() is called from. That means
$main::a and $main::b (or $::a and $::b) in the main package,$FooPack::a and
$FooPack::b in the FooPack package, etc. If the sort block is in scope of amy or state
declaration of$a and/or$b , youmustspell out the full name of the variables in the sort block :

package main;
my $a = "C"; # DANGER, Will Robinson, DANGER !!!

print sort { $a cmp $b } qw(A C E G B D F H);
WRONG

sub badlexi { $a cmp $b }
print sort badlexi qw(A C E G B D F H);

WRONG
t he above prints BACFEDGH or some other incorrect ordering

print sort { $::a cmp $::b } qw(A C E G B D F H);
OK

print sort { our $a cmp our $b } qw(A C E G B D F H);
also OK

print sort { our ($a, $b); $a cmp $b } qw(A C E G B D F H);
also OK

sub lexi { our $a cmp our $b }
print sort lexi qw(A C E G B D F H);

also OK
t he above print ABCDEFGH

With proper care you may mix package and my (or state)$a and/or$b :

my $a = {
tiny => −2,
small => −1,
normal => 0,
big => 1,
huge => 2

};

say sort { $a−>{our $a} <=> $a−>{our $b} }

perl v5.26.0 2018-06-12 78

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

qw{ huge normal tiny small big};

prints tinysmallnormalbighuge

$a and $b are implicitely local to thesort() execution and regain their former values upon
completing the sort.

Sort subroutines written using$a and$b are bound to their calling package. It is possible, but of
limited interest, to define them in a different package, since the subroutine must still refer to the
calling package’s$a and$b :

package Foo;
sub lexi { $Bar::a cmp $Bar::b }
package Bar;
... sort Foo::lexi ...

Use the prototyped versions (see above) for a more generic alternative.

The comparison function is required to behave. If it returns inconsistent results (sometimes saying
$x[1] is less than$x[2] and sometimes saying the opposite, for example) the results are not
well-defined.

Because<=> returnsundef when either operand isNaN(not-a-number), be careful when sorting
with a comparison function like $a <=> $b any lists that might contain aNaN. The following
example takes advantage thatNaN != NaN to eliminate anyNaNs from the input list.

my @result = sort { $a <=> $b } grep { $_ == $_ } @input;

spliceARRAY,OFFSET,LENGTH,LIST
spliceARRAY,OFFSET,LENGTH
spliceARRAY,OFFSET
spliceARRAY

Removes the elements designated byOFFSETandLENGTH from an array, and replaces them with
the elements ofLIST, if any. In list context, returns the elements removed from the array. In scalar
context, returns the last element removed, orundef if no elements are removed. Thearray grows
or shrinks as necessary. If OFFSETis negative then it starts that far from the end of the array. If
LENGTH is omitted, removes everything fromOFFSETonward. If LENGTH is negative, removes
the elements fromOFFSETonward except for −LENGTH elements at the end of the array. If both
OFFSETandLENGTH are omitted, removes everything. If OFFSETis past the end of the array and
a LENGTH was provided, Perl issues a warning, and splices at the end of the array.

The following equivalences hold (assuming$#a >= $i)

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,−1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)

splice can be used, for example, to implement n−ary queue processing:

sub nary_print {
my $n = shift;
while (my @next_n = splice @_, 0, $n) {

say join q{ −− }, @next_n;
}

}

nary_print(3, qw(a b c d e f g h));
prints:
a −− b −− c
d −− e −− f
g −− h

Starting with Perl 5.14, an experimental feature allowedsplice to take a scalar expression. This

perl v5.26.0 2018-06-12 79

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split

Splits the stringEXPR into a list of strings and returns the list in list context, or the size of the list
in scalar context. (Prior to Perl 5.11, it also overwrote@_with the list in void and scalar context.
If you target old perls, beware.)

If only PATTERN is given, EXPRdefaults to$_ .

Anything in EXPR that matchesPATTERN is taken to be a separator that separates theEXPR into
substrings (called "fields") that donot include the separator. Note that a separator may be longer
than one character or even hav e no characters at all (the empty string, which is a zero-width
match).

The PATTERN need not be constant; an expression may be used to specify a pattern that varies at
runtime.

If PATTERN matches the empty string, theEXPR is split at the match position (between
characters). Asan example, the following:

print join(':', split(/b/, 'abc')), "\n";

uses theb in 'abc' as a separator to produce the outputa:c . Howev er, this:

print join(':', split(//, 'abc')), "\n";

uses empty string matches as separators to produce the outputa:b:c ; thus, the empty string may
be used to splitEXPR into a list of its component characters.

As a special case forsplit , the empty pattern given in match operator syntax (//) specifically
matches the empty string, which is contrary to its usual interpretation as the last successful match.

If PATTERN is /ˆ/ , then it is treated as if it used the multiline modifier (/ˆ/m), since it isn’t
much use otherwise.

/m and any of the other pattern modifiers valid forqr (summarized in
‘‘ qr/STRING/msixpodualn’’ in perlop) may be specified explicitly.

As another special case,split emulates the default behavior of the command line toolawk
when thePATTERN is either omitted or a string composed of a single space character (such as'Â'
or "\x20" , but not e.g./Â/). In this case, any leading whitespace inEXPR is removed before
splitting occurs, and thePATTERN is instead treated as if it were/\s+/ ; in particular, this means
thatanycontiguous whitespace (not just a single space character) is used as a separator. Howev er,
this special treatment can be avoided by specifying the pattern/Â/ instead of the string"Â" ,
thereby allowing only a single space character to be a separator. In earlier Perls this special case
was restricted to the use of a plain"Â" as the pattern argument to split; in Perl 5.18.0 and later
this special case is triggered by any expression which evaluates to the simple string"Â" .

If omitted, PATTERN defaults to a single space,"Â" , triggering the previously describedawk
emulation.

If LIMIT is specified and positive, it represents the maximum number of fields into which the
EXPRmay be split; in other words,LIMIT is one greater than the maximum number of timesEXPR
may be split. Thus, theLIMIT value 1 means thatEXPR may be split a maximum of zero times,
producing a maximum of one field (namely, the entire value ofEXPR). For instance:

print join(':', split(//, 'abc', 1)), "\n";

produces the outputabc , and this:

print join(':', split(//, 'abc', 2)), "\n";

produces the outputa:bc , and each of these:

perl v5.26.0 2018-06-12 80

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

print join(':', split(//, 'abc', 3)), "\n";
print join(':', split(//, 'abc', 4)), "\n";

produces the outputa:b:c .

If LIMIT is negative, it is treated as if it were instead arbitrarily large; as many fields as possible
are produced.

If LIMIT is omitted (or, equivalently, zero), then it is usually treated as if it were instead negative
but with the exception that trailing empty fields are stripped (empty leading fields are always
preserved); if all fields are empty, then all fields are considered to be trailing (and are thus stripped
in this case). Thus, the following:

print join(':', split(/,/, 'a,b,c,,,')), "\n";

produces the outputa:b:c , but the following:

print join(':', split(/,/, 'a,b,c,,,', −1)), "\n";

produces the outputa:b:c::: .

In time-critical applications, it is worthwhile to avoid splitting into more fields than necessary.
Thus, when assigning to a list, ifLIMIT is omitted (or zero), thenLIMIT is treated as though it
were one larger than the number of variables in the list; for the following,LIMIT is implicitly 3:

my ($login, $passwd) = split(/:/);

Note that splitting anEXPR that evaluates to the empty string always produces zero fields,
regardless of theLIMIT specified.

An empty leading field is produced when there is a positive-width match at the beginning of
EXPR. For instance:

print join(':', split(/ /, ' abc')), "\n";

produces the output:abc . Howev er, a zero-width match at the beginning ofEXPR never
produces an empty field, so that:

print join(':', split(//, ' abc'));

produces the outputÂ:a:b:c (rather than:Â:a:b:c).

An empty trailing field, on the other hand, is produced when there is a match at the end ofEXPR,
regardless of the length of the match (of course, unless a non-zeroLIMIT is given explicitly, such
fields are removed, as in the last example). Thus:

print join(':', split(//, ' abc', −1)), "\n";

produces the outputÂ:a:b:c: .

If the PATTERN contains capturing groups, then for each separator, an additional field is produced
for each substring captured by a group (in the order in which the groups are specified, as per
backreferences); if any group does not match, then it captures theundef value instead of a
substring. Also,note that any such additional field is produced whenever there is a separator (that
is, whenever a split occurs), and such an additional field doesnot count towards theLIMIT.
Consider the following expressions evaluated in list context (each returned list is provided in the
associated comment):

split(/−|,/, "1−10,20", 3)
('1', '10', '20')

split(/(−|,)/, "1−10,20", 3)
('1', '−', '10', ',', '20')

split(/−|(,)/, "1−10,20", 3)
('1', undef, '10', ',', '20')

split(/(−)|,/, "1−10,20", 3)
('1', '−', '10', undef, '20')

perl v5.26.0 2018-06-12 81

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

split(/(−)|(,)/, "1−10,20", 3)
('1', '−', undef, '10', undef, ',', '20')

sprintf FORMAT, LIST
Returns a string formatted by the usualprintf conventions of the C library functionsprintf .
See below for more details and seesprintf(3) orprintf (3) on your system for an explanation of the
general principles.

For example:

Format number with up to 8 leading zeroes
my $result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
my $rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting: it emulates the C functionsprintf(3), but doesn’t use it
except for floating-point numbers, and even then only standard modifiers are allowed. Non-
standard extensions in your localsprintf(3) are therefore unavailable from Perl.

Unlike printf , sprintf does not do what you probably mean when you pass it an array as
your first argument. Thearray is given scalar context, and instead of using the 0th element of the
array as the format, Perl will use the count of elements in the array as the format, which is almost
never useful.

Perl’ssprintf permits the following universally-known conversions:

%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating−point number, in scientific notation
%f a floating−point number, in fixed decimal notation
%g a floating−point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper−case letters
%E like %e, but using an upper−case "E"
%G like %g, but with an upper−case "E" (if applicable)
%b an unsigned integer, in binary
%B like %b, but using an upper−case "B" with the # flag
%p a pointer (outputs the Perl value's address in hexadecimal)
%n special: *stores* the number of characters output so far

into the next argument in the parameter list
%a hexadecimal floating point
%A like %a, but using upper−case letters

Finally, for backward (and we do mean ‘‘backward’’) compatibility, Perl permits these
unnecessary but widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by%e, %E, %gand%G
for numbers with the modulus of the exponent less than 100 is system-dependent: it may be three
or less (zero-padded as necessary). In other words, 1.23 times ten to the 99th may be either
‘‘ 1.23e99’’ or ‘ ‘1.23e099’’. Similarly for %aand%A: the exponent or the hexadecimal digits may

perl v5.26.0 2018-06-12 82

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

float: especially the ‘‘long doubles’’ Perl configuration option may cause surprises.

Between the%and the format letter, you may specify several additional attributes controlling the
interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as2$. By default sprintf will format the next
unused argument in the list, but this allows you to take the arguments out of order:

printf '%2$d %1$d', 12, 34; # prints "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

flags
one or more of:

space prefix non−negative number with a space
+ prefix non−negative number with a plus sign
− l eft−justify within the field
0 use zeros, not spaces, to right−justify
ensure the leading "0" for any octal,

prefix non−zero hexadecimal with "0x" or "0X",
prefix non−zero binary with "0b" or "0B"

For example:

printf '<% d>', 12; # prints "< 12>"
printf '<% d>', 0; # prints "< 0>"
printf '<% d>', −12; # prints "<−12>"
printf '<%+d>', 12; # prints "<+12>"
printf '<%+d>', 0; # prints "<+0>"
printf '<%+d>', −12; # prints "<−12>"
printf '<%6s>', 12; # prints "< 12>"
printf '<%−6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o>', 12; # prints "<014>"
printf '<%#x>', 12; # prints "<0xc>"
printf '<%#X>', 12; # prints "<0XC>"
printf '<%#b>', 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once, the space is ignored.

printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the%oconversion, the precision is incremented
if it’ s necessary for the leading ‘‘0’’.

printf '<%#.5o>', 012; # prints "<00012>"
printf '<%#.5o>', 012345; # prints "<012345>"
printf '<%#.0o>', 0; # prints "<0>"

vector flag
This flag tells Perl to interpret the supplied string as a vector of integers, one for each
character in the string. Perl applies the format to each integer in turn, then joins the resulting
strings with a separator (a dot. by default). Thiscan be useful for displaying ordinal values
of characters in arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n", $ˆV; # Perl's version

Put an asterisk* before thev to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # I Pv6 address
printf "bits are %0*v8b\n", " ", $bits; # r andom bitstring

You can also explicitly specify the argument number to use for the join string using

perl v5.26.0 2018-06-12 83

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

something like*2$v ; for example:

printf '%*4$vX %*4$vX %*4$vX', # 3 I Pv6 addresses
@addr[1..3], ":";

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given value.
You can override the width by putting a number here, or get the width from the next
argument (with*) or from a specified argument (e.g., with*2$):

printf "<%s>", "a"; # prints "<a>"
printf "<%6s>", "a"; # prints "< a>"
printf "<%*s>", 6, "a"; # prints "< a>"
printf '<%*2$s>', "a", 6; # prints "< a>"
printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through* is negative, it has the same effect as the− flag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying a. followed by a number. For floating-point formats except g
andG, this specifies how many places right of the decimal point to show (the default being 6).
For example:

t hese examples are subject to system−specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"
printf '<%.1e>', 10; # prints "<1.0e+01>"

For ‘‘g’ ’ and ‘‘G’ ’, this specifies the maximum number of significant digits to show; for
example:

These examples are subject to system−specific variation.
printf '<%g>', 1; # prints "<1>"
printf '<%.10g>', 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<1e+02>"
printf '<%.2g>', 100.01; # prints "<1e+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"
printf '<%.1g>', 0.0111; # prints "<0.01>"
printf '<%.2g>', 0.0111; # prints "<0.011>"
printf '<%.3g>', 0.0111; # prints "<0.0111>"

For integer conversions, specifying a precision implies that the output of the number itself
should be zero-padded to this width, where the 0 flag is ignored:

printf '<%.6d>', 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%−10.6d>', 1; # prints "<000001 >"
printf '<%10.6d>', 1; # prints "< 000001>"
printf '<%010.6d>', 1; # prints "< 000001>"
printf '<%+10.6d>', 1; # prints "< +000001>"

printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%−10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>', 1; # prints "< 000001>"
printf '<%#10.6x>', 1; # prints "< 0x000001>"

perl v5.26.0 2018-06-12 84

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

For string conversions, specifying a precision truncates the string to fit the specified width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using.* , or from a specified argument
(e.g., with.*2$):

printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>', 6, 1; # prints "<000001>"

printf '<%.*2$x>', 1, 6; # prints "<000001>"

printf '<%6.*2$x>', 1, 4; # prints "< 0001>"

If a precision obtained through* is negative, it counts as having no precision at all.

printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', −1, "string"; # prints "<string>"

printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', −1, 0; # prints "<0>"

size
For numeric conversions, you can specify the size to interpret the number as usingl , h, V, q,
L, or ll . For integer conversions (d u o x X b i D U O), numbers are usually
assumed to be whatever the default integer size is on your platform (usually 32 or 64 bits),
but you can override this to use instead one of the standard C types, as supported by the
compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned
char" on Perl 5.14 or later

h i nterpret integer as C type "short" or
"unsigned short"

j i nterpret integer as C type "intmax_t" on Perl
5.14 or later, and only with a C99 compiler
(unportable)

l i nterpret integer as C type "long" or
"unsigned long"

q, L, or ll interpret integer as C type "long long",
"unsigned long long", or "quad" (typically
64−bit integers)

t i nterpret integer as C type "ptrdiff_t" on Perl
5.14 or later

z i nterpret integer as C type "size_t" on Perl 5.14
or later

As of 5.14, none of these raises an exception if they are not supported on your platform.
However, if warnings are enabled, a warning of theprintf warning class is issued on an
unsupported conversion flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependency before you start running the program,
put something like this at its top:

use 5.014; # f or hh/j/t/z/ printf modifiers

You can find out whether your Perl supports quads via Config:

perl v5.26.0 2018-06-12 85

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

use Config;
if ($Config{use64bitint} eq "define"

|| $Config{longsize} >= 8) {
print "Nice quads!\n";

}

For floating-point conversions (e f g E F G), numbers are usually assumed to be the
default floating-point size on your platform (double or long double), but you can force ‘‘long
double’’ w ith q, L, or ll if your platform supports them.You can find out whether your Perl
supports long doubles via Config:

use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers ‘‘long double’’ to be the default floating-point size to
use on your platform via Config:

use Config;
if ($Config{uselongdouble} eq "define") {

print "long doubles by default\n";
}

It can also be that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifierV has no effect for Perl code, but is supported for compatibility withXS
code. Itmeans ‘‘use the standard size for a Perl integer or floating-point number’’, which is
the default.

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. Ifthe format specification uses* to require additional arguments, these are
consumed from the argument list in the order they appear in the format specificationbefore
the value to format. Where an argument is specified by an explicit index, this does not affect
the normal order for the arguments, even when the explicitly specified index would have been
the next argument.

So:

printf "<%*.*s>", $a, $b, $c;

uses$a for the width,$b for the precision, and$c as the value to format; while:

printf '<%*1$.*s>', $a, $b;

would use$a for the width and precision, and$b as the value to format.

Here are some more examples; be aware that when using an explicit index, the$ may need
escaping:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
printf "%*1\$.*f\n", 4, 5, 10; # will print "5.0000\n"

If use locale (including use locale ':not_characters') is in effect and
POSIX::setlocale has been called, the character used for the decimal separator in formatted
floating-point numbers is affected by theLC_NUMERIClocale. Seeperllocale andPOSIX.

sqrtEXPR
sqrt Return the positive square root ofEXPR. If EXPR is omitted, uses$_ . Works only for non-

negative operands unless you’ve loaded theMath::Complex module.

perl v5.26.0 2018-06-12 86

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

use Math::Complex;
print sqrt(−4); # prints 2i

srandEXPR
srand

Sets and returns the random number seed for therand operator.

The point of the function is to ‘‘seed’’ the rand function so thatrand can produce a different
sequence each time you run your program. When called with a parameter, srand uses that for
the seed; otherwise it (semi−)randomly chooses a seed.In either case, starting with Perl 5.14, it
returns the seed.To signal that your code will workonlyon Perls of a recent vintage:

use 5.014; # so s rand returns the seed

If srand is not called explicitly, it is called implicitly without a parameter at the first use of the
rand operator. Howev er, there are a few situations where programs are likely to want to call
srand . One is for generating predictable results, generally for testing or debugging. There,you
usesrand($seed) , with the same$seed each time. Another case is that you may want to call
srand after a fork to avoid child processes sharing the same seed value as the parent (and
consequently each other).

Do not call srand() (i.e., without an argument) more than once per process. The internal state
of the random number generator should contain more entropy than can be provided by any seed,
so callingsrand again actuallylosesrandomness.

Most implementations ofsrand take an integer and will silently truncate decimal numbers.This
meanssrand(42) will usually produce the same results assrand(42.1) . To be safe, always
passsrand an integer.

A typical use of the returned seed is for a test program which has too many combinations to test
comprehensively in the time available to it each run.It can test a random subset each time, and
should there be a failure, log the seed used for that run so that it can later be used to reproduce the
same results.

rand is not cryptographically secure. You should not rely on it in security-sensitive
situations. As of this writing, a number of third-partyCPAN modules offer random number
generators intended by their authors to be cryptographically secure, including: Data::Entropy,
Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

statFILEHANDLE
statEXPR
statDIRHANDLE
stat Returns a 13−element list giving the status info for a file, either the file opened viaFILEHANDLE

or DIRHANDLE, or named byEXPR. If EXPR is omitted, it stats$_ (not _!). Returnsthe empty
list if stat fails. Typically used as follows:

my ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem
1 i no inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file's owner
5 gid numeric group ID of file's owner
6 r dev the device identifier (special files only)
7 s ize total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch

10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred I/O size in bytes for interacting with the

file (may vary from file to file)

perl v5.26.0 2018-06-12 87

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

12 blocks actual number of system−specific blocks allocated
on disk (often, but not always, 512 bytes each)

(The epoch was at 00:00 January 1, 1970GMT.)

(*) Not all fields are supported on all filesystem types.Notably, the ctime field is non-portable.In
particular, you cannot expect it to be a ‘‘creation time’’; see ‘‘Files and Filesystems’’ in perlport
for details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the laststat , lstat , or filetest are returned. Example:

if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative underNFS.)

Because the mode contains both the file type and its permissions, you should mask off the file type
portion and (s)printf using a"%o" if you want to see the real permissions.

my $mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure, and, if successful,
sets the information associated with the special filehandle_.

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
my $sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb−>size, $sb−>mode & 07777,
scalar localtime $sb−>mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from the Fcntl module:

use Fcntl ':mode';

my $mode = (stat($filename))[2];

my $user_rwx = ($mode & S_IRWXU) >> 6;
my $group_read = ($mode & S_IRGRP) >> 3;
my $other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

my $is_setuid = $mode & S_ISUID;
my $is_directory = S_ISDIR($mode);

You could write the last two using the−u and −d operators. Commonlyavailable S_IF*
constants are:

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system−dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not all are necessarily available on
y our system.

perl v5.26.0 2018-06-12 88

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

The following are compatibility aliases for S_IRUSR,
S_IWUSR, and S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and theS_IF* functions are

S_IMODE($mode) the part of $mode containing the permission
bits and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit−anded with (for example)
S_IFREG or with the following functions

The operators −f, −d, −l, −b, −c, −p, and −S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct −X operator counterpart, but for the first one
t he −g operator is often equivalent. The ENFMT stands for
r ecord flocking enforcement, a platform−dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod(2) andstat(2) documentation for more details about theS_* constants.
To get status info for a symbolic link instead of the target file behind the link, use thelstat
function.

Portability issues: ‘‘stat’’ in perlport.

stateVARLIST
stateTYPE VARLIST
stateVARLIST : ATTRS
stateTYPE VARLIST : ATTRS

state declares a lexically scoped variable, just like my. Howev er, those variables will never be
reinitialized, contrary to lexical variables that are reinitialized each time their enclosing block is
entered. See‘‘ Persistent Private Variables’’ in perlsub for details.

If more than one variable is listed, the list must be placed in parentheses.With a parenthesised
list, undef can be used as a dummy placeholder. Howev er, since initialization of state variables
in list context is currently not possible this would serve no purpose.

state is available only if the"state" feature is enabled or if it is prefixed withCORE:: . The
"state" feature is enabled automatically with ause v5.10 (or higher) declaration in the
current scope.

studySCALAR
study

At this time,study does nothing. This may change in the future.

Prior to Perl version 5.16, it would create an inverted index of all characters that occurred in the
given SCALAR (or $_ if unspecified). When matching a pattern, the rarest character from the
pattern would be looked up in this index. Rarity was based on some static frequency tables
constructed from some C programs and English text.

subNAME BLOCK
subNAME (PROT O) BLOCK

perl v5.26.0 2018-06-12 89

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

subNAME : ATTRS BLOCK
subNAME (PROT O) : ATTRS BLOCK

This is subroutine definition, not a real functionper se. Without a BLOCK it’ s just a forward
declaration. Without aNAME, it’ s an anonymous function declaration, so does return a value: the
CODEref of the closure just created.

See perlsub and perlref for details about subroutines and references; see attributes and
Attribute::Handlers for more information about attributes.

_ _SUB_ _
A special token that returns a reference to the current subroutine, orundef outside of a
subroutine.

The behaviour of_ _SUB_ _ within a regex code block (such as/(?{...})/) is subject to
change.

This token is only available underuse v5.16 or the"current_sub" feature. Seefeature.

substrEXPR,OFFSET,LENGTH,REPLACEMENT
substrEXPR,OFFSET,LENGTH
substrEXPR,OFFSET

Extracts a substring out ofEXPR and returns it. First character is at offset zero.If OFFSET is
negative, starts that far back from the end of the string.If LENGTH is omitted, returns everything
through the end of the string.If LENGTH is negative, leaves that many characters off the end of
the string.

my $s = "The black cat climbed the green tree";
my $color = substr $s, 4, 5; # black
my $middle = substr $s, 4, −11; # black cat climbed the
my $end = substr $s, 14; # c limbed the green tree
my $tail = substr $s, −4; # t ree
my $z = substr $s, −4, 2; # t r

You can use thesubstr function as an lvalue, in which caseEXPR must itself be an lvalue. If
you assign something shorter thanLENGTH, the string will shrink, and if you assign something
longer thanLENGTH, the string will grow to accommodate it.To keep the string the same length,
you may need to pad or chop your value usingsprintf .

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within
the string is returned. If the substring is beyond either end of the string,substr returns the
undefined value and produces a warning. Whenused as an lvalue, specifying a substring that is
entirely outside the string raises an exception. Here’s an example showing the behavior for
boundary cases:

my $name = 'fred';
substr($name, 4) = 'dy'; # $name is now 'freddy'
my $null = substr $name, 6, 2; # r eturns "" (no warning)
my $oops = substr $name, 7; # r eturns undef, with warning
substr($name, 7) = 'gap'; # r aises an exception

An alternative to using substr as an lvalue is to specify the replacement string as the 4th
argument. Thisallows you to replace parts of theEXPR and return what was there before in one
operation, just as you can withsplice .

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # c limbed
$s is n ow "The black cat jumped from the green tree"

Note that the lvalue returned by the three-argument version ofsubstr acts as a ’magic bullet’;
each time it is assigned to, it remembers which part of the original string is being modified; for
example:

perl v5.26.0 2018-06-12 90

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my $x = '1234';
for (substr($x,1,2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4
$_ = 'xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_ = 'pq'; print $x,"\n"; # prints 5pq9

}

With negative offsets, it remembers its position from the end of the string when the target string is
modified:

my $x = '1234';
for (substr($x, −3, 2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4, as above
$x = 'abcdefg';
print $_,"\n"; # prints f

}

Prior to Perl version 5.10, the result of using an lvalue multiple times was unspecified. Prior to
5.16, the result with negative offsets was unspecified.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename.Returns1 for success,0
otherwise. Onsystems that don’t support symbolic links, raises an exception. To check for that,
use eval:

my $symlink_exists = eval { symlink("",""); 1 };

Portability issues: ‘‘symlink’’ in perlport.

syscallNUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call.If unimplemented, raises an exception. Thearguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If not, the
pointer to the string value is passed.You are responsible to make sure a string is pre-extended
long enough to receive any result that might be written into a string.You can’t use a string literal
(or other read-only string) as an argument tosyscall because Perl has to assume that any string
pointer might be written through. If your integer arguments are not literals and have nev er been
interpreted in a numeric context, you may need to add0 to them to force them to look like
numbers. Thisemulates thesyswrite function (or vice versa):

require 'syscall.ph'; # may need to run h2ph
my $s = "hi there\n";
syscall(SYS_write(), fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your syscall, which in practice
should (usually) suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails,
syscall returns−1 and sets$! (errno). Notethat some system callscan legitimately return
−1. The proper way to handle such calls is to assign$! = 0 before the call, then check the
value of$! if syscall returns−1.

There’s a problem withsyscall(SYS_pipe()) : it returns the file number of the read end of
the pipe it creates, but there is no way to retrieve the file number of the other end.You can avoid
this problem by usingpipe instead.

Portability issues: ‘‘syscall’’ in perlport.

sysopenFILEHANDLE,FILENAME,MODE
sysopenFILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it withFILEHANDLE. If
FILEHANDLE is an expression, its value is used as the real filehandle wanted; an undefined scalar
will be suitably autovivified. This function calls the underlying operating system’s open(2)
function with the parametersFILENAME, MODE, andPERMS.

perl v5.26.0 2018-06-12 91

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Returns true on success andundef otherwise.

The possible values and flag bits of theMODE parameter are system-dependent; they are available
via the standard moduleFcntl . See the documentation of your operating system’s open(2)
syscall to see which values and flag bits are available. You may combine several flags using the
| −operator.

Some of the most common values areO_RDONLYfor opening the file in read-only mode,
O_WRONLYfor opening the file in write-only mode, andO_RDWRfor opening the file in read-
write mode.

For historical reasons, some values work on almost every system supported by Perl: 0 means read-
only, 1 means write-only, and 2 means read/write.We know that these values donot work under
OS/390and on the Macintosh; you probably don’t want to use them in new code.

If the file named byFILENAME does not exist and theopen call creates it (typically because
MODE includes theO_CREATflag), then the value ofPERMS specifies the permissions of the
newly created file. If you omit thePERMS argument tosysopen , Perl uses the octal value
0666 . These permission values need to be in octal, and are modified by your process’s current
umask.

In many systems theO_EXCLflag is available for opening files in exclusive mode. Thisis not
locking: exclusiveness means here that if the file already exists, sysopen fails. O_EXCLmay
not work on network filesystems, and has no effect unless theO_CREATflag is set as well.
SettingO_CREAT|O_EXCLprevents the file from being opened if it is a symbolic link. It does
not protect against symbolic links in the file’s path.

Sometimes you may want to truncate an already-existing file. This can be done using the
O_TRUNCflag. Thebehavior ofO_TRUNCwith O_RDONLYis undefined.

You should seldom if ever use0644 as argument tosysopen , because that takes away the user’s
option to have a more permissive umask. Betterto omit it. Seeumask for more on this.

Note that under Perls older than 5.8.0,sysopen depends on thefdopen(3) C library function.
On many Unix systems,fdopen(3) is known to fail when file descriptors exceed a certain value,
typically 255. If you need more file descriptors than that, consider using thePOSIX::open
function. For Perls 5.8.0 and later, PerlIO is (most often) the default.

See perlopentut for a kinder, gentler explanation of opening files.

Portability issues: ‘‘sysopen’’ in perlport.

sysreadFILEHANDLE,SCALAR,LENGTH,OFFSET
sysreadFILEHANDLE,SCALAR,LENGTH

Attempts to readLENGTH bytes of data into variableSCALAR from the specifiedFILEHANDLE,
usingread(2). It bypasses bufferedIO, so mixing this with other kinds of reads,print , write ,
seek , tell , or eof can cause confusion because the perlio or stdio layers usually buffer data.
Returns the number of bytes actually read,0 at end of file, or undef if there was an error (in the
latter case$! is also set).SCALAR will be grown or shrunk so that the last byte actually read is
the last byte of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negative OFFSETspecifies placement at that many characters counting backwards
from the end of the string.A positive OFFSETgreater than the length ofSCALAR results in the
string being padded to the required size with"\0" bytes before the result of the read is appended.

There is nosyseof()function, which is ok, sinceeof doesn’t work well on device files (like ttys)
anyway. Usesysread and check for a return value for 0 to decide whether you’re done.

Note that if the filehandle has been marked as:utf8 , Unicode characters are read instead of
bytes (theLENGTH, OFFSET, and the return value ofsysread are in Unicode characters).The
:encoding(...) layer implicitly introduces the:utf8 layer. Seebinmode , open , and the
open pragma.

perl v5.26.0 2018-06-12 92

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sysseekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE’s system positionin bytesusinglseek(2). FILEHANDLE may be an expression
whose value gives the name of the filehandle.The values forWHENCE are 0 to set the new
position toPOSITION; 1 to set the it to the current position plusPOSITION; and 2 to set it toEOF
plusPOSITION,typically negative.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the:encoding(UTF−8) I/O layer), theseek , tell , and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

sysseek bypasses normal buffered IO, so mixing it with reads other thansysread (for
examplereadline or read), print , write , seek , tell , or eof may cause confusion.

For WHENCE,you may also use the constantsSEEK_SET, SEEK_CUR, and SEEK_END(start of
the file, current position, end of the file) from the Fcntl module. Use of the constants is also more
portable than relying on 0, 1, and 2.For example to define a ‘‘systell’’ f unction:

use Fcntl 'SEEK_CUR';
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero is returned as the
string "0 but true" ; thussysseek returns true on success and false on failure, yet you can
still easily determine the new position.

systemLIST
systemPROGRAM LIST

Does exactly the same thing asexec , except that a fork is done first and the parent process waits
for the child process to exit. Note that argument processing varies depending on the number of
arguments. Ifthere is more than one argument inLIST, or if LIST is an array with more than one
value, starts the program given by the first element of the list with arguments given by the rest of
the list. If there is only one scalar argument, the argument is checked for shell metacharacters, and
if there are any, the entire argument is passed to the system’s command shell for parsing (this is
/bin/sh −c on Unix platforms, but varies on other platforms).If there are no shell
metacharacters in the argument, it is split into words and passed directly toexecvp , which is
more efficient. On Windows, only thesystem PROGRAM LIST syntax will reliably avoid
using the shell;system LIST , even with more than one element, will fall back to the shell if the
first spawn fails.

Perl will attempt to flush all files opened for output before any operation that may do a fork, but
this may not be supported on some platforms (see perlport).To be safe, you may need to set$|
($AUTOFLUSHin English) or call theautoflush method of IO::Handle on any open
handles.

The return value is the exit status of the program as returned by thewait call. To get the actual
exit value, shift right by eight (see below). Seealsoexec . This isnot what you want to use to
capture the output from a command; for that you should use merely backticks orqx// , as
described in ‘‘‘ STRING‘’’ i n perlop. Returnvalue of −1 indicates a failure to start the program or
an error of thewait (2) system call (inspect$! for the reason).

If you’d like to make system (and many other bits of Perl) die on error, hav e a look at the
autodie pragma.

Like exec , system allows you to lie to a program about its name if you use thesystem
PROGRAM LISTsyntax. Again, seeexec .

SinceSIGINT andSIGQUIT are ignored during the execution of system , if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based
on the return value.

my @args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?";

If you’d like to manually inspectsystem ’s failure, you can check all possible failure modes by

perl v5.26.0 2018-06-12 93

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

inspecting$? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Alternatively, you may inspect the value of${ˆCHILD_ERROR_NATIVE} with theW*() calls
from thePOSIXmodule.

When system ’s arguments are executed indirectly by the shell, results and return codes are
subject to its quirks. See ‘‘‘ STRING‘’’ in perlop andexec for details.

Sincesystem does afork andwait it may affect aSIGCHLDhandler. See perlipc for details.

Portability issues: ‘‘system’’ in perlport.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET
syswriteFILEHANDLE,SCALAR,LENGTH
syswriteFILEHANDLE,SCALAR

Attempts to writeLENGTH bytes of data from variableSCALAR to the specifiedFILEHANDLE,
usingwrite (2). If LENGTH is not specified, writes wholeSCALAR. It bypasses buffered IO, so
mixing this with reads (other thansysread)), print , write , seek , tell , or eof may
cause confusion because the perlio and stdio layers usually buffer data. Returns the number of
bytes actually written, orundef if there was an error (in this case the errno variable$! is also
set). If the LENGTH is greater than the data available in theSCALAR after theOFFSET,only as
much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string other than the
beginning. A negative OFFSETspecifies writing that many characters counting backwards from
the end of the string. IfSCALAR is of length zero, you can only use anOFFSETof 0.

WARNING : If the filehandle is marked :utf8 , Unicode characters encoded inUTF−8 are written
instead of bytes, and theLENGTH, OFFSET, and return value ofsyswrite are in
(UTF8−encoded Unicode) characters.The :encoding(...) layer implicitly introduces the
:utf8 layer. Alternately, if the handle is not marked with an encoding but you attempt to write
characters with code points over 255, raises an exception. Seebinmode , open , and the open
pragma.

tell FILEHANDLE
tell Returns the current positionin bytesfor FILEHANDLE, or −1 on error. FILEHANDLE may be an

expression whose value gives the name of the actual filehandle.If FILEHANDLE is omitted,
assumes the file last read.

Note the emphasis on bytes: even if the filehandle has been set to operate on characters (for
example using the:encoding(UTF−8) I/O layer), theseek , tell , and sysseek family of
functions use byte offsets, not character offsets, because seeking to a character offset would be
very slow in a UTF−8 file.

The return value oftell for the standard streams like the STDIN depends on the operating
system: it may return −1 or something else.tell on pipes, fifos, and sockets usually returns −1.

There is nosystell function. Usesysseek($fh, 0, 1) for that.

Do not usetell (or other buffered I/O operations) on a filehandle that has been manipulated by
sysread , syswrite , or sysseek . Those functions ignore the buffering, while tell does
not.

perl v5.26.0 2018-06-12 94

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

telldir DIRHANDLE
Returns the current position of thereaddir routines onDIRHANDLE. Value may be given to
seekdir to access a particular location in a directory. telldir has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted.CLASSNAME is the name of a
class implementing objects of correct type.Any additional arguments are passed to the
appropriate constructor method of the class (meaningTIESCALAR, TIEHANDLE, TIEARRAY, or
TIEHASH). Typically these are arguments such as might be passed to thedbm_open(3) function
of C. The object returned by the constructor is also returned by thetie function, which would be
useful if you want to access other methods inCLASSNAME.

Note that functions such askeys andvalues may return huge lists when used on large objects,
like DBM files. You may prefer to use theeach function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(my %HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
while (my ($key,$val) = each %HIST) {

print $key, ' = ', unpack('L', $val), "\n";
}

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this

A class implementing an ordinary array should have the following methods:

TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DELETE this, key
EXISTS this, key
DESTROY this
UNTIE this

A class implementing a filehandle should have the following methods:

perl v5.26.0 2018-06-12 95

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will notuse or require a module for you; you need to do
that explicitly yourself. See DB_File or the Config module for interestingtie implementations.

For further details see perltie,tied .

tied VARIABLE
Returns a reference to the object underlyingVARIABLE (the same value that was originally
returned by thetie call that bound the variable to a package.) Returns the undefined value if
VARIABLE isn’t tied to a package.

time
Returns the number of non-leap seconds since whatever time the system considers to be the epoch,
suitable for feeding togmtime and localtime . On most systems the epoch is 00:00:00UTC,
January 1, 1970; a prominent exception being MacOS Classic which uses 00:00:00, January 1,
1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from Perl
5.8 onwards (or fromCPAN before then), or, if you have gettimeofday(2), you may be able to use
thesyscall interface of Perl. See perlfaq8 for details.

For date and time processing look at the many related modules onCPAN. For a comprehensive
date and time representation look at the DateTime module.

times
Returns a four-element list giving the user and system times in seconds for this process and any
exited children of this process.

my ($user,$system,$cuser,$csystem) = times;

In scalar context,times returns$user .

Children’s times are only included for terminated children.

Portability issues: ‘‘times’’ in perlport.

tr/// The transliteration operator. Same asy/// . See ‘‘Quote-Like Operators’’ in perlop.

perl v5.26.0 2018-06-12 96

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

truncateFILEHANDLE,LENGTH
truncateEXPR,LENGTH

Truncates the file opened onFILEHANDLE, or named byEXPR, to the specified length. Raises an
exception if truncate isn’t implemented on your system. Returns true if successful,undef on
error.

The behavior is undefined ifLENGTH is greater than the length of the file.

The position in the file ofFILEHANDLE is left unchanged.You may want to call seek before
writing to the file.

Portability issues: ‘‘truncate’’ in perlport.

uc EXPR
uc Returns an uppercased version ofEXPR. This is the internal function implementing the\U escape

in double-quoted strings.It does not attempt to do titlecase mapping on initial letters.See
ucfirst for that.

If EXPR is omitted, uses$_ .

This function behaves the same way under various pragmas, such as in a locale, aslc does.

ucfirstEXPR
ucfirst

Returns the value ofEXPR with the first character in uppercase (titlecase in Unicode). This is the
internal function implementing the\u escape in double-quoted strings.

If EXPR is omitted, uses$_ .

This function behaves the same way under various pragmas, such as in a locale, aslc does.

umaskEXPR
umask

Sets the umask for the process toEXPRand returns the previous value. IfEXPR is omitted, merely
returns the current umask.

The Unix permissionrwxr−x−−− is represented as three sets of three bits, or three octal digits:
0750 (the leading 0 indicates octal and isn’t one of the digits).The umask value is such a
number representing disabled permissions bits.The permission (or ‘‘mode’’) values you pass
mkdir or sysopen are modified by your umask, so even if you tell sysopen to create a file
with permissions0777 , if your umask is0022 , then the file will actually be created with
permissions0755 . If your umask were 0027 (group can’t write; others can’t read, write, or
execute), then passingsysopen 0666 would create a file with mode0640 (because0666 &˜
027 is 0640).

Here’s some advice: supply a creation mode of0666 for regular files (insysopen) and one of
0777 for directories (inmkdir) and executable files. This gives users the freedom of choice: if
they want protected files, they might choose process umasks of022 , 027 , or even the particularly
antisocial mask of077 . Programs should rarely if ever make policy decisions better left to the
user. The exception to this is when writing files that should be kept private: mail files, web
browser cookies,.rhostsfiles, and so on.

If umask(2) is not implemented on your system and you are trying to restrict access foryourself
(i.e., (EXPR & 0700) > 0), raises an exception. Ifumask(2) is not implemented and you are
not trying to restrict access for yourself, returnsundef .

Remember that a umask is a number, usually given in octal; it is not a string of octal digits.See
alsooct , if all you have is a string.

Portability issues: ‘‘umask’’ in perlport.

undefEXPR
undef

Undefines the value ofEXPR,which must be an lvalue. Useonly on a scalar value, an array (using
@), a hash (using%), a subroutine (using&), or a typeglob (using*). Saying undef
$hash{$key} will probably not do what you expect on most predefined variables orDBM list
values, so don’t do that; seedelete . Always returns the undefined value. You can omit the

perl v5.26.0 2018-06-12 97

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine, assign to a variable, or pass as a parameter. Examples:

undef $foo;
undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
my ($x, $y, undef, $z) = foo(); # I gnore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink

Deletes a list of files.On success, it returns the number of files it successfully deleted. On failure,
it returns false and sets$! (errno):

my $unlinked = unlink 'a', 'b', 'c';
unlink @goners;
unlink glob "*.bak";

On error, unlink will not tell you which files it could not remove. If you want to know which
files you could not remove, try them one at a time:

foreach my $file (@goners) {
unlink $file or warn "Could not unlink $file: $!";

}

Note: unlink will not attempt to delete directories unless you are superuser and the−U flag is
supplied to Perl.Even if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystem.Finally, using unlink on directories is not supported on many
operating systems. Usermdir instead.

If LIST is omitted,unlink uses$_ .

unpackTEMPLATE,EXPR
unpackTEMPLATE

unpack does the reverse ofpack : it takes a string and expands it out into a list of values. (In
scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the$_ string. Seeperlpacktut for an introduction to this function.

The string is broken into chunks described by theTEMPLATE. Each chunk is converted separately
to a value. Typically, either the string is a result ofpack , or the characters of the string represent
a C structure of some kind.

The TEMPLATE has the same format as in thepack function. Here’s a subroutine that does
substring:

sub substr {
my ($what, $where, $howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s

sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed inpack , you may prefix a field with a %<number> to indicate that
you want a <number>−bit checksum of the items instead of the items themselves. Default is a
16−bit checksum. The checksum is calculated by summing numeric values of expanded values
(for string fields the sum oford($char) is taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

perl v5.26.0 2018-06-12 98

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

my $checksum = do {
local $/; # s lurp!
unpack("%32W*", readline) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

my $setbits = unpack("%32b*", $selectmask);

The p andP formats should be used with care.Since Perl has no way of checking whether the
value passed tounpack corresponds to a valid memory location, passing a pointer value that’s
not known to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group is larger than what the
remainder of the input string allows, the result is not well defined: the repeat count may be
decreased, orunpack may produce empty strings or zeros, or it may raise an exception. If the
input string is longer than one described by theTEMPLATE, the remainder of that input string is
ignored.

Seepack for more examples and notes.

unshiftARRAY,LIST
Does the opposite of ashift . Or the opposite of apush , depending on how you look at it.
Prepends list to the front of the array and returns the new number of elements in the array.

unshift(@ARGV, '−e') unless $ARGV[0] =˜ /ˆ−/;

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Usereverse to do the reverse.

Starting with Perl 5.14, an experimental feature allowed unshift to take a scalar expression.
This experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

untieVARIABLE
Breaks the binding between a variable and a package. (See tie.)Has no effect if the variable is
not tied.

use ModuleVERSION LIST
use ModuleVERSION
use ModuleLIST
use Module
useVERSION

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; Module−>import(LIST); }

except that Modulemustbe a bareword. Theimportation can be made conditional by using the if
module.

In the peculiaruse VERSION form, VERSION may be either a positive decimal fraction such as
5.006, which will be compared to$] , or a v−string of the form v5.6.1, which will be compared to
$ˆV (aka$PERL_VERSION). An exception is raised ifVERSION is greater than the version of
the current Perl interpreter; Perl will not attempt to parse the rest of the file. Compare with
require , which can do a similar check at run time.Symmetrically,no VERSION allows you
to specify that you want a version of Perl older than the specified one.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl (that is, prior to 5.6.0) that do not
support this syntax. The equivalent numeric version should be used instead.

use v5.6.1; # c ompile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version beforeuse ing library modules
that won’t work with older versions of Perl. (We try not to do this more than we have to.)

perl v5.26.0 2018-06-12 99

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

use VERSION also lexically enables all features available in the requested version as defined by
the feature pragma, disabling any features not in the requested version’s feature bundle. See
feature. Similarly, if the specified Perl version is greater than or equal to 5.12.0, strictures are
enabled lexically as withuse strict . Any explicit use ofuse strict or no strict
overridesuse VERSION , even if i t comes before it. Later use ofuse VERSION will override
all behavior of a previoususe VERSION , possibly removing thestrict andfeature added
by use VERSION . use VERSION does not load thefeature.pmor strict.pmfiles.

TheBEGIN forces therequire andimport to happen at compile time.The require makes
sure the module is loaded into memory if it hasn’t been yet.The import is not a builtin; it’s just
an ordinary static method call into theModule package to tell the module to import the list of
features back into the current package.The module can implement itsimport method any way
it likes, though most modules just choose to derive their import method via inheritance from the
Exporter class that is defined in theExporter module. SeeExporter. If no import method
can be found, then the call is skipped, even if there is anAUTOLOAD method.

If you do not want to call the package’s import method (for instance, to stop your namespace
from being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module andLIST, then theuse will call the
VERSIONmethod in class Module with the given version as an argument:

use Module 12.34;

is equivalent to:

BEGIN { require Module; Module−>VERSION(12.34) }

The default VERSIONmethod, inherited from theUNIVERSALclass, croaks if the given version
is larger than the value of the variable$Module::VERSION .

Again, there is a distinction between omittingLIST (import called with no arguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afterVERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also implemented this
way. Some of the currently implemented pragmas are:

use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scope (like strict or
integer , unlike ordinary modules, which import symbols into the current package (which are
effective through the end of the file).

Becauseuse takes effect at compile time, it doesn’t respect the ordinary flow control of the code
being compiled. In particular, putting a use inside the false branch of a conditional doesn’t
prevent it from being processed. If a module or pragma only needs to be loaded conditionally, this
can be done using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

There’s a correspondingno declaration that unimports meanings imported byuse , i.e., it calls
Module−>unimport(LIST) instead of import . It behaves just as import does with
VERSION,an omitted or emptyLIST, or no unimport method being found.

perl v5.26.0 2018-06-12 100

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

no integer;
no strict 'refs';
no warnings;

Care should be taken when using theno VERSION form of no . It is only meant to be used to
assert that the running Perl is of a earlier version than its argument andnot to undo the feature-
enabling side effects ofuse VERSION .

See perlmodlib for a list of standard modules and pragmas. See perlrun for the−M and −m
command-line options to Perl that giveuse functionality from the command-line.

utimeLIST
Changes the access and modification times on each file of a list of files. The first two elements of
the list must be theNUMERIC access and modification times, in that order. Returns the number of
files successfully changed.The inode change time of each file is set to the current time.For
example, this code has the same effect as the Unixtouch(1) command when the filesalready exist
and belong to the user running the program:

#!/usr/bin/perl
my $atime = my $mtime = time;
utime $atime, $mtime, @ARGV;

Since Perl 5.8.0, if the first two elements of the list areundef , theutime(2) syscall from your C
library is called with a null second argument. Onmost systems, this will set the file’s access and
modification times to the current time (i.e., equivalent to the example above) and will work even
on files you don’t own provided you have write permission:

for my $file (@ARGV) {
utime(undef, undef, $file)

|| warn "Couldn't touch $file: $!";
}

UnderNFS this will use the time of theNFSserver, not the time of the local machine. If there is a
time synchronization problem, theNFS server and local machine will have different times.The
Unix touch(1) command will in fact normally use this form instead of the one shown in the first
example.

Passing only one of the first two elements asundef is equivalent to passing a 0 and will not have
the effect described when both areundef . This also triggers an uninitialized warning.

On systems that supportfutimes(2), you may pass filehandles among the files.On systems that
don’t support futimes(2), passing filehandles raises an exception. Filehandlesmust be passed as
globs or glob references to be recognized; barewords are considered filenames.

Portability issues: ‘‘utime’’ in perlport.

valuesHASH
valuesARRAY

In list context, returns a list consisting of all the values of the named hash.In Perl 5.12 or later
only, will also return a list of the values of an array; prior to that release, attempting to use an array
argument will produce a syntax error. In scalar context, returns the number of values.

Hash entries are returned in an apparently random order. The actual random order is specific to a
given hash; the exact same series of operations on two hashes may result in a different order for
each hash.Any insertion into the hash may change the order, as will any deletion, with the
exception that the most recent key returned byeach or keys may be deleted without changing
the order. So long as a given hash is unmodified you may rely onkeys , values andeach to
repeatedly return the same order as each other. See ‘‘A lgorithmic Complexity Attacks’’ in perlsec
for details on why hash order is randomized. Aside from the guarantees provided here the exact
details of Perl’s hash algorithm and the hash traversal order are subject to change in any release of
Perl. Tied hashes may behave differently to Perl’s hashes with respect to changes in order on
insertion and deletion of items.

As a side effect, callingvalues resets theHASH or ARRAY’s internal iterator, see each . (In
particular, calling values in void context resets the iterator with no other overhead. Apartfrom

perl v5.26.0 2018-06-12 101

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

resetting the iterator, values @array in list context is the same as plain@array . (We
recommend that you use void context keys @array for this, but reasoned that takingvalues
@array out would require more documentation than leaving it in.)

Note that the values are not copied, which means modifying them will modify the contents of the
hash:

for (values %hash) { s /foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # s ame

Starting with Perl 5.14, an experimental feature allowedvalues to take a scalar expression. This
experiment has been deemed unsuccessful, and was removed as of Perl 5.24.

To avoid confusing would-be users of your code who are running earlier versions of Perl with
mysterious syntax errors, put this sort of thing at the top of your file to signal that your code will
work onlyon Perls of a recent vintage:

use 5.012; # so k eys/values/each work on arrays

See alsokeys , each , andsort .

vec EXPR,OFFSET,BITS
Treats the string inEXPR as a bit vector made up of elements of widthBITS and returns the value
of the element specified byOFFSETas an unsigned integer. BITS therefore specifies the number of
bits that are reserved for each element in the bit vector. This must be a power of two from 1 to 32
(or 64, if your platform supports that).

If BITS is 8, ‘‘elements’’ coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of sizeBITS/8, and each
group is converted to a number as withpack /unpack with big-endian formatsn/N (and
analogously for BITS==64). Seepack for details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into 8/BITS
groups. Bitsof a byte are numbered in a little-endian-ish way, as in 0x01 , 0x02 , 0x04 , 0x08 ,
0x10 , 0x20 , 0x40 , 0x80 . For example, breaking the single input bytechr(0x36) into two
groups gives a list (0x6, 0x3) ; breaking it into 4 groups gives (0x2, 0x1, 0x3, 0x0) .

vec may also be assigned to, in which case parentheses are needed to give the expression the
correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned.If an element off the end of
the string is written to, Perl will first extend the string with sufficiently many zero bytes. It is an
error to try to write off the beginning of the string (i.e., negative OFFSET).

If the string happens to be encoded asUTF−8 internally (and thus has theUTF8 flag set),vec tries
to convert it to use a one-byte-per-character internal representation. However, if the string contains
characters with values of 256 or higher, that conversion will fail. In that situation,vec will
operate on the underlying buffer regardless, in its internalUTF−8 representation.

Strings created withvec can also be manipulated with the logical operators| , &, ˆ , and ˜ . These
operators will assume a bit vector operation is desired when both operands are strings.See
‘‘ Bitwise String Operators’’ in perlop.

The following code will build up anASCII string saying'PerlPerlPerl' . The comments
show the string after each step. Note that this code works in the same way on big-endian or little-
endian machines.

my $foo = '';
vec($foo, 0, 32) = 0x5065726C; # 'Perl'

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

vec($foo, 2, 16) = 0x5065; # 'PerlPe'

perl v5.26.0 2018-06-12 102

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4) = 2; # ' PerlPerlPe' . "\x02"
vec($foo, 21, 4) = 7; # ' PerlPerlPer'

' r' is "\x72"
vec($foo, 45, 2) = 3; # ' PerlPerlPer' . "\x0c"
vec($foo, 93, 1) = 1; # ' PerlPerlPer' . "\x2c"
vec($foo, 94, 1) = 1; # ' PerlPerlPerl'

' l' is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

my $bits = unpack("b*", $vector);
my @bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the* .

Here is an example to illustrate how the bits actually fall in place:

#!/usr/bin/perl −wl

print <<'EOT';
0 1 2 3

unpack("V",$_) 01234567890123456789012345678901
−−
EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}
}

}

format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
_ _END_ _

Regardless of the machine architecture on which it runs, the example above should print the
following table:

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

−−
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000

perl v5.26.0 2018-06-12 103

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000

perl v5.26.0 2018-06-12 104

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000

perl v5.26.0 2018-06-12 105

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait
Behaves like wait (2) on your system: it waits for a child process to terminate and returns the pid
of the deceased process, or−1 if there are no child processes. The status is returned in$? and
${ˆCHILD_ERROR_NATIVE} . Note that a return value of−1 could mean that child processes
are being automatically reaped, as described in perlipc.

If you usewait in your handler for$SIG{CHLD} , it may accidentally wait for the child created
by qx or system . See perlipc for details.

Portability issues: ‘‘wait’’ in perlport.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased process, or−1
if there is no such child process.A non-blocking wait (withWNOHANG in FLAGS) can return 0 if
there are child processes matchingPID but none have terminated yet.The status is returned in$?
and${ˆCHILD_ERROR_NATIVE} .

A PID of 0 indicates to wait for any child process whose process groupID is equal to that of the
current process.A PID of less than−1 indicates to wait for any child process whose process
groupID is equal to −PID. APID of −1 indicates to wait for any child process.

If you say

use POSIX ":sys_wait_h";

my $kid;
do {

$kid = waitpid(−1, WNOHANG);
} w hile $kid > 0;

or

1 while waitpid(−1, WNOHANG) > 0;

then you can do a non-blocking wait for all pending zombie processes (see ‘‘WAIT’’ in POSIX).
Non-blocking wait is available on machines supporting either thewaitpid(2) or wait4(2) syscalls.
However, waiting for a particular pid withFLAGS of 0 is implemented everywhere. (Perl
emulates the system call by remembering the status values of processes that have exited but have
not been harvested by the Perl script yet.)

Note that on some systems, a return value of −1 could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

Portability issues: ‘‘waitpid’’ in perlport.

wantarray
Returns true if the context of the currently executing subroutine oreval is looking for a list
value. Returnsfalse if the context is looking for a scalar. Returns the undefined value if the
context is looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray ’s result is unspecified in the top level of a file, in aBEGIN, UNITCHECK, CHECK,
INIT or ENDblock, or in aDESTROYmethod.

This function should have been namedwantlist() instead.

warn LIST
Prints the value ofLIST to STDERR. If the last element ofLIST does not end in a newline, it
appends the same file/line number text asdie does.

If the output is empty and$@already contains a value (typically from a previous eval) that value is
used after appending"\t...caught" to $@. This is useful for staying almost, but not entirely

perl v5.26.0 2018-06-12 106

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

similar todie .

If $@is empty, then the string"Warning: Something's wrong" is used.

No message is printed if there is a$SIG{_ _WARN_ _} handler installed. It is the handler’s
responsibility to deal with the message as it sees fit (like, for instance, converting it into adie).
Most handlers must therefore arrange to actually display the warnings that they are not prepared to
deal with, by callingwarn again in the handler. Note that this is quite safe and will not produce
an endless loop, since_ _WARN_ _hooks are not called from inside one.

You will find this behavior is slightly different from that of$SIG{_ _DIE_ _} handlers (which
don’t suppress the error text, but can instead calldie again to change it).

Using a_ _WARN_ _handler provides a powerful way to silence all warnings (even the so-called
mandatory ones). An example:

wipe out *all* compile−time warnings
BEGIN { $SIG{'_ _WARN_ _'} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no c ompile−time or run−time warnings before here
$DOWARN = 1;

r un−time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting%SIGentries and for more examples. Seethe Carp module for
other kinds of warnings using itscarp andcluck functions.

write FILEHANDLE
write EXPR
write

Writes a formatted record (possibly multi-line) to the specifiedFILEHANDLE, using the format
associated with that file. By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (see theselect function) may be set
explicitly by assigning the name of the format to the$˜ variable.

Top of form processing is handled automatically:if there is insufficient room on the current page
for the formatted record, the page is advanced by writing a form feed and a special top-of-page
format is used to format the new page header before the record is written. By default, the top-of-
page format is the name of the filehandle with_TOPappended, ortop in the current package if
the former does not exist. Thiswould be a problem with autovivified filehandles, but it may be
dynamically set to the format of your choice by assigning the name to the$ˆ variable while that
filehandle is selected.The number of lines remaining on the current page is in variable$−, which
can be set to0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out
asSTDOUT but may be changed by theselect operator. If the FILEHANDLE is anEXPR, then
the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time.For more on formats, see perlform.

Note that write isnot the opposite ofread . Unfortunately.

y/// The transliteration operator. Same astr/// . See ‘‘Quote-Like Operators’’ in perlop.

Non-function Keywords by Cross-reference
perldata

_ _DATA_ _
_ _END_ _

These keywords are documented in ‘‘Special Literals’’ in perldata.

perlmod

perl v5.26.0 2018-06-12 107

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

BEGIN
CHECK
END
INIT
UNITCHECK

These compile phase keywords are documented in ‘‘BEGIN, UNITCHECK, CHECK, INITandEND’’
in perlmod.

perlobj

DESTROY
This method keyword is documented in ‘‘Destructors’’ in perlobj.

perlop

and
cmp
eq
ge
gt
le
lt
ne
not
or
x
xor These operators are documented in perlop.

perlsub

AUTOLOAD
This keyword is documented in ‘‘A utoloading’’ in perlsub.

perlsyn

else
elsif
for
foreach
if
unless
until
while

These flow-control keywords are documented in ‘‘Compound Statements’’ in perlsyn.

elseif
The ‘‘else if’’ k eyword is spelledelsif in Perl. There’s no elif or else if either. It does
parseelseif , but only to warn you about not using it.

See the documentation for flow-control keywords in ‘‘Compound Statements’’ in perlsyn.

default
given
when

These flow-control keywords related to the experimental switch feature are documented in
‘‘ Switch Statements’’ in perlsyn.

perl v5.26.0 2018-06-12 108

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/1+perlfunc

