Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)
NAME

mmap, munmap — map or unmap files or devices into memory
SYNOPSIS

#include <sys/mman.h>

void *mmap(void * addr, sze_tlength int prot, int flags
int fd, off_t offse);
int munmap(void *addr, size_tlength);

See NOTES for information on feature test macro requirements.

DESCRIPTION
mmap() creates a e mapping in the virtual address space of the calling process. The starting address
for the nev mapping is specified iaddr. Thelengthargument specifies the length of the mapping.

If addris NULL, then the krnel chooses the address at which to create the mapping; this is the most
portable method of creating amenapping. Ifaddr is not NULL, then the kernel takes it as a hint
about where to place the mapping; on Linux, the mapping will be created at a nearby page boundary
The address of the wemapping is returned as the result of the call.

The contents of a file mapping (as opposed to anyamamuns mapping; seMIAP_ANONYMOUS
belav), are initialized usindgengthbytes starting at éet offsetin the file (or other object) referred to
by the file descriptorfd. offset must be a multiple of the page size as returned by
sysconf(_SC AGE_SIZE)

The prot algument describes the desired memory protection of the mapping (and must not conflict with
the open mode of the file). It is eitheROT_NONE or the bitwise OR of one or more of the felto
ing flags:

PROT_EXEC Pages may bexecuted.
PROT_READ Pages may be read.
PROT_WRITE Paes may be written.
PROT_NONE Pages may not be accessed.

The flagsargument determines whether updates to the mapping are visible to other processes mapping
the same region, and whether updates are carried through to the underlyimpiilbehavior is deter
mined by including exactly one of the following valuedlays

MAP_SHARED
Share this mappingUpdates to the mapping are visible to other processes mapping the same
region, and (in the case of file-backed mappings) are carried through to the underlying file.
(To precisely control when updates are carried through to the underlying file requires the use
of msynq2).)

MAP_PRIVATE
Create a pviate copy-on-write mappingUpdates to the mapping are not visible to other pro-
cesses mapping the same file, and are not carried through to the underlying file. It is unspeci-
fied whether changes made to the file aftentheap() call are visible in the mapped region.

Both of these flags are described in POSIX.1-2001 and POSIX.1-2008.
In addition, zero or more of the following values can be OR&dgs

MAP_32BIT (since Linux 2.4.20, 2.6)
Put the mapping into the first 2 Gigabytes of the process address $picéag is supported
only on x86-64, for 64-bit programdt was added to alle thread stacks to be allocated
somavhere in the first 2 GB of memaqrgo as tornprove cntext-switch performance on some
early 64-bit processordModern x86-64 processors no longevéndhis performance problem,
so use of this flag is not required on those systethe MAP_32BIT flag is ignored when
MAP_FIXED is set.

MAP_ANON
Synonym foMAP_ANONYMOUS. Deprecated.

2017-09-15 1

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)

MAP_ANONYMOUS
The mapping is not backed byydiile; its contents are initialized to zerdhe fd agument is
ignored; havever, some implementations requirid to be -1 ifMAP_ANONYMOUS (or
MAP_ANON) is gpecified, and portable applications should ensure i offsetargument
should be zero. The use BfAP_ANONYMOUS in conjunction withMAP_SHARED is
supported on Linux only since kernel 2.4.

MAP_DENYWRITE
This flag is ignored. (Long ago, it signaled that attempts to write to the underlying file should
fail with ETXTBUSY . But this was a source of denial-of-service attacks.)

MAP_EXECUTABLE
This flag is ignored.

MAP_FILE
Compatibility flag. Ignored.

MAP_FIXED
Don't interpretaddr as a hint; place the mapping at exactly that addraddr must be a mul-
tiple of the page size. If the memory region specifiecddgr andlen overlaps pages of an
existing mapping(s), then theverlapped part of the existing mapping(s) will be discardéd.
the specified address cannot be useaiap() will fail. Becauseequiring a fied address for
a mapping is less portable, the use of this option is discouraged.

MAP_GROWSDOWN
This flag is used for stackst indicates to the kernel virtual memory system that the mapping
should extend denward in memory The return address is one pagedo than the memory
area that is actually created in the procegstual address spacéouching an address in the
"guard" page bele the mapping will cause the mapping towgroy a ppge. Thisgrowth can
be repeated until the mapping goto within a page of the high end of the next lower map-
ping, at which point touching the "guard" page will result SIGSEGV signal.

MAP_HUGETLB (since Linux 2.6.32)
Allocate the mapping using "huge pagesSée the Linux kernel source fil2ocumenta-
tion/'vm/hugetlbpgetxt for further information, as well as NOTES, belo

MAP_HUGE_2MB, MAP_HUGE_1GB (since Linux 3.8)
Used in conjunction wittMAP_HUGETLB to select alternatée hugetlb page sizes (respec-
tively, 2 MB and 1 GB) on systems that support multiple hugetlb page sizes.

More generallythe desired huge page size can be configured by encoding the base-2 log
rithm of the desired page size in the six bits at tfieetMAP_HUGE_SHIFT. (A value of

zero in this bit field provides the default huge page size; the default huge page size can be dis-
covered vie theHugepaesize field exposed byproc/meminfg Thus,the abee two con-

stants are defined as:

#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
#define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)

The range of huge page sizes that are supported by the system can\meedidnpolisting the
subdirectories itsys/kernel/mm/hugeges.

MAP_LOCKED (since Linux 2.5.37)
Mark the mmaped region to be locked in the same wawlask(2). Thisimplementation
will try to populate (prefault) the whole range but the mmap call db&shivith ENOMEM
if this fails. Thereforanmajor faults might happen later on. So the semantic is not as strong as
mlock(2). Oneshould usenmap() plusmlock(2) when major faults are not acceptable after
the initialization of the mapping. THRdAP_LOCKED flag is ignored in older kernels.

MAP_NONBLOCK (since Linux 2.5.46)
This flag is meaningful only in conjunction witMlAP_POPULATE . Don't perform read-
ahead: create page tables entries only for pages that are already present in RAM. Since Linux
2.6.23, this flag causddAP_POPULATE to do nothing. One dayhe combination of
MAP_POPULATE andMAP_NONBLOCK may be reimplemented.

2017-09-15 2

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)

MAP_NORESERVE
Do not resere svap gace for this mapping. When swap space is reserved, one has the guar
antee that it is possible to modify the mappivghen swap space is not reserved one might
getSIGSEGV upon a write if no physical memory igallable. Seelso the discussion of the
file /proc/sys/ivm/overcommit_memadryproc(5). In kernels before 2.6, this flag hadfeft
only for private writable mappings.

MAP_POPULATE (since Linux 2.5.46)
Populate (prefault) page tables for a mappikgr a fle mapping, this causes read-ahead on
the file. This will help to reduce blocking on page faults latstAP_POPULATE is sup-
ported for pwate mappings only since Linux 2.6.23.

MAP_STACK (since Linux 2.6.27)
Allocate the mapping at an address suitable for a process or thread Bhécklag is cur
rently a no-op, but is used in the glibc threading implementation so that if some architectures
require special treatment for stack allocations, support can later be transparently implemented
for glibc.

MAP_UNINITIALIZED (since Linux 2.6.33)
Don't clear anonymous pageShis flag is intended to impve performance on embedded
devices. This flag is honored only if the énel was configured with the&€€ON-
FIG_MMAP_ALLOW_UNINITIALIZED option. Becauseof the security implications,
that option is normally enabled only on embeddedods (i.e., devices where one has com-
plete control of the contents of user memory).

Of the abwe flags, onlyMAP_FIXED is specified in POSIX.1-2001 and POSIX.1-2008wever,
most systems also suppMAP_ANONYMOUS (or its synonymMAP_ANON).

Memory mapped bynmap() is preserved acro$srk (2), with the same attributes.

A file is mapped in multiples of the page siZ&r a file that is not a multiple of the page size, the
remaining memory is zeroed when mapped, and writes to tfiahrare not written out to the fil&.he

effect of changing the size of the underlying file of a mapping on the pages that correspond to added or
removed regons of the file is unspecified.

munmap()
The munmap() system call deletes the mappings for the specified address range, and causes further
references to addresses within the range to generaé imemory referencesThe region is also
automatically unmapped when the process is terminated. On the other hand, closing the file descriptor
does not unmap the region.

The addresaddr must be a multiple of the page sizet(lengthneed not be). All pages containing a
part of the indicated range are unmapped, and subsequent references to these pages will generate
SIGSEGV. lItis not an error if the indicated range does not contaymaapped pages.

RETURN VALUE
On successnmap() returns a pointer to the mapped ar€m error the \alueMAP_FAILED (that is,
(void *) —1) is returned, an@rrnois set to indicate the cause of the error.

On successnunmap() returns 0. On failure, it returns -1, aadno is set to indicate the cause of the
error (probably td&EINVAL).

ERRORS
EACCES
A file descriptor refers to a non-regular file. Or a file mappiag requested,ub fd is not
open for readingOr MAP_SHARED was requested anBROT_WRITE is set, lnt fd is not
open in read/write@ RDWR) mode. OrPROT_WRITE is set, but the file is append-only.

EAGAIN
The file has been locked, or too much memory has been lockesk{danit (2)).

EBADF
fd is not a valid file descriptor (adAP_ANONYMOUS was ot set).

EINVAL
We don't like addr, length or offset(e.g., thg are too large, or not aligned on a page bound-

ary).

2017-09-15 3

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)
EINVAL
(since Linux 2.6.12)engthwas Q.
EINVAL
flagscontained neitheAP_PRIVATE or MAP_SHARED, or contained both of thesel
ues.
ENFILE
The system-wide limit on the total number of open files has been reached.
ENODEV
The underlying filesystem of the specified file does not support memory mapping.
ENOMEM
No memory is wailable.
ENOMEM

The process maximum number of mappingsowld hare been &ceeded. Thigrror can also
occur formunmap(), when unmapping a region in the middle of an existing mapping, since
this results in tw amnaller mappings on either side of the region being unmapped.

ENOMEM
(since Linux 4.7) The procesRLIMIT_D ATA limit, described irgetrlimit (2), would hae
been exceeded.

EOVERFLOW
On 32-hit architecture together with thegarfile extension (i.e., using 64-biff t): the num-
ber of pages used féength plus number of pages used foffsetwould overflow unsigned
long (32 hits).

EPERM
The prot agument asks foPROT_EXEC but the mapped area belongs to a file on a filesys-
tem that was mounted noee.

EPERM
The operation was prented by a file seal; sdéentl(2).

ETXTBSY
MAP_DENYWRITE was st but the object specified b is open for writing.

Use of a mapped region can result in these signals:

SIGSEGV
Attempted write into a region mapped as read-only.

SIGBUS
Attempted access to a portion of thefer that does not correspond to the file (fearaple,
beyond the end of the file, including the case where another process has truncated the file).

ATTRIBUTES
For an planation of the terms used in this section,a&éutes(7).

Interface Attrib ute Value
mmap(), munmap() Thread safety| MT-Safé

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD.

AVAILABILITY
On POSIX systems on whichmmap(), msynd2), and munmap() are aailable,
_POSIX_MAPPED_FILES is defined incunistd.h>to a value greater than 0. (See agscon(3).)

NOTES
On some hardware architectures (e.g., i3BROT_WRITE impliesPROT_READ. It is architecture
dependent whethé?ROT_READ impliesPROT_EXEC or not. Portable programs shouldaglys set
PROT_EXEC if they intend to gecute code in the memapping.

%

The portable ay to create a mapping is to spedfgdr as 0 (NULL), and omiMAP_FIXED from
flags In this case, the system chooses the address for the mapping; the address is chosen so as not to
conflict with ary existing mapping, and will not be 0. If ttMdAP_FIXED flag is specified, andddr

2017-09-15 4

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)

is 0 (NULL), then the mapped address will be O (NULL).

Certain flagsconstants are defined only if suitable feature test macros are defined (possibbulty. def
_DEFAULT _SOURCE with glibc 2.19 or later; or BSD_SOURCEor _SVID_SOURCE in glibc
2.19 and earlier (Employing GNU_SOURCE also suffices, and requiring that macro specifically
would hare been more logical, since these flags are all Linux-specifihig releant flags are:
MAP_32BIT, MAP_ANONYMOUS (and the synggm MAP_ANON), MAP_DENYWRITE ,
MAP_EXECUTABLE , MAP_FILE , MAP_GROWSDOWN, MAP_HUGETLB , MAP_LOCKED ,
MAP_NONBLOCK , MAP_NORESERVE, MAP_POPULATE, and MAP_STACK.

An application can determine which pages of a mapping are currently resident irfféhipage cache
usingmincore(2).

Timestamps changes for file-backed mappings

For file-bacled mappings, thet_atimefield for the mapped file may be updated at time between
the mmap() and the corresponding unmapping; the first reference to a mapped page will update the
field if it has not been already.

The st_ctimeand st_mtimefield for a file mapped witPROT_WRITE andMAP_SHARED will be
updated after a write to the mapped region, and before a subsetpyer(2) with theMS_SYNC or
MS_ASYNC flag, if one occurs.

Huge page (Huge TLB) mappings

For mappings that empjohuge pages, the requirements for the argumemsnaodp() andmunmap()
differ somewhat from the requirements for mappings that use tlve gattem page size.

For mmap(), offsetmust be a multiple of the underlying huge page size. The system automatically
alignslengthto be a multiple of the underlying huge page size.

For munmap(), addr andlengthmust both be a multiple of the underlying huge page size.

C library/kernel differences

BUGS

This page describes the interface provided by the gfibtap() wrapper function.Originally, this
function irvoked a gstem call of the same name. Since kernel 2.4, that system call has been super
seded bynmap2(2), and navadays the glibenmap() wrapper function imokes mmap?2(2) with a suit-

ably adjusted value faffset

On Linux, there are no guarantee®ltkose suggested almwunderMAP_NORESERVE. By default,
ary process can be killed atyamoment when the system runs out of memory.

In kernels before 2.6.7, th&1AP_POPULATE flag has d&ct only if prot is specified as
PROT_NONE.

SUSv3 specifies thahmap() should fail iflengthis 0. However, in kernels before 2.6.12nmap()
succeeded in this case: no mappingswreated and the call returnaddr. Since kernel 2.6.12,
mmap() fails with the erroEINVAL for this case.

POSIX specifies that the system shallais zero fill ay partial page at the end of the object and that
system will nger write ary modification of the object beyond its end. On Linux, when you write data
to such partial page after the end of the object, the data stays in the pageveadirethe file is
closed and unmapped anebe though the data is wer written to the file itself, subsequent mappings
may see the modified content. In some cases, this coulddoebfixcallingmsynd2) before the unmap
takes place; hwever, this doesrt'work ontmpfs(5) (for example, when using the POSIX shared mem-
ory interface documented shm_overview(7)).

EXAMPLE

The following program prints part of the file specified in its first command-ligensent to standard
output. Therange of bytes to be printed is specified viaetfand length values in the second and third
command-line ayuments. Therogram creates a memory mapping of the required pages of the file
and then usesrite (2) to output the desired bytes.

Program source

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

2017-09-15 5

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)

#include <stdlib.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])
{
char *addr;
int fd;
struct stat sb;
off_t offset, pa_offset;
size_t length;
ssize_ts;

if (argc < 3 || arge > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1)
handle_error("open");

if (fstat(fd, &sb) == -1) [* To obtain file size */
handle_error(“fstat");

offset = atoi(argv[2]);
pa_offset = offset & "(sysconf(_ SC_PAGE_SIZE) - 1);
/* offset for mmap() must be page aligned */

if (offset >= sh.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);

}

if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sh.st_size)
length = sh.st_size - offset;
/* Can't display bytes past end of file */

} else{ /* No length arg ==> display to end of file */
length = sh.st_size - offset;
}

addr = mmap(NULL, length + offset — pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);
if (addr == MAP_FAILED)
handle_error("mmap");

s = write(STDOUT_FILENO, addr + offset — pa_offset, length);
if (s = length) {
if (s ==-1)
handle_error("write");

fprintf(stderr, "partial write");
exit(EXIT_FAILURE);

2017-09-15 6

https://man.m.sourcentral.org/ubuntu1710/2+munmap

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MMAP(2) Linux Programmes Manual MMAP(2)
}
munmap(addr, length + offset — pa_offset);
close(fd);

exit(EXIT_SUCCESS);
}
SEE ALSO
getpagesiz€), memfd_creat€2), mincore(2), mlock(2), mmap2(2), mprotect(2), mremap(2),
msynq?2), remap_file_pagef), setrlimit(2), shmat(2), userfaultfd(2), shm_operf3), shm_over-

view(7)
The descriptions of the following files iproc(5): /proc/[pid]/maps /proc/[pid]/map_files and
/proc/[pid])/smaps
B.O. GallmeisterPOSIX.4, O'Reilly, pp. 128-129 and 389-391.
COLOPHON

This page is part of release 4.13 of the Limen-payes project. Adescription of the project, informa-
tion about reporting bugs, and the Ilatesersion of this page, can be found at
https://lwww.kernel.org/doc/man—pages/.

2017-09-15 7

https://man.m.sourcentral.org/ubuntu1710/2+munmap

