
MMAP(2) Linux Programmer’s Manual MMAP(2)

NAME
mmap, munmap − map or unmap files or devices into memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void * addr, size_t length, int prot, int flags,
int fd, off_t offset);

int munmap(void * addr, size_t length);

See NOTES for information on feature test macro requirements.

DESCRIPTION
mmap() creates a new mapping in the virtual address space of the calling process. The starting address
for the new mapping is specified inaddr. The lengthargument specifies the length of the mapping.

If addr is NULL, then the kernel chooses the address at which to create the mapping; this is the most
portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as a hint
about where to place the mapping; on Linux, the mapping will be created at a nearby page boundary.
The address of the new mapping is returned as the result of the call.

The contents of a file mapping (as opposed to an anonymous mapping; seeMAP_ANONYMOUS
below), are initialized usinglengthbytes starting at offset offset in the file (or other object) referred to
by the file descriptor fd. offset must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

The prot argument describes the desired memory protection of the mapping (and must not conflict with
the open mode of the file). It is eitherPROT_NONE or the bitwise OR of one or more of the follow-
ing flags:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

The flagsargument determines whether updates to the mapping are visible to other processes mapping
the same region, and whether updates are carried through to the underlying file.This behavior is deter-
mined by including exactly one of the following values inflags:

MAP_SHARED
Share this mapping.Updates to the mapping are visible to other processes mapping the same
region, and (in the case of file-backed mappings) are carried through to the underlying file.
(To precisely control when updates are carried through to the underlying file requires the use
of msync(2).)

MAP_PRIVATE
Create a private copy-on-write mapping.Updates to the mapping are not visible to other pro-
cesses mapping the same file, and are not carried through to the underlying file. It is unspeci-
fied whether changes made to the file after themmap() call are visible in the mapped region.

Both of these flags are described in POSIX.1-2001 and POSIX.1-2008.

In addition, zero or more of the following values can be ORed inflags:

MAP_32BIT (since Linux 2.4.20, 2.6)
Put the mapping into the first 2 Gigabytes of the process address space.This flag is supported
only on x86-64, for 64-bit programs.It was added to allow thread stacks to be allocated
somewhere in the first 2 GB of memory, so as to improve context-switch performance on some
early 64-bit processors.Modern x86-64 processors no longer have this performance problem,
so use of this flag is not required on those systems.The MAP_32BIT flag is ignored when
MAP_FIXED is set.

MAP_ANON
Synonym forMAP_ANONYMOUS . Deprecated.

Linux 2017-09-15 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

MAP_ANONYMOUS
The mapping is not backed by any file; its contents are initialized to zero.The fd argument is
ignored; however, some implementations requirefd to be −1 ifMAP_ANONYMOUS (or
MAP_ANON) is specified, and portable applications should ensure this.Theoffsetargument
should be zero. The use ofMAP_ANONYMOUS in conjunction withMAP_SHARED is
supported on Linux only since kernel 2.4.

MAP_DENYWRITE
This flag is ignored. (Long ago, it signaled that attempts to write to the underlying file should
fail with ETXTBUSY . But this was a source of denial-of-service attacks.)

MAP_EXECUTABLE
This flag is ignored.

MAP_FILE
Compatibility flag. Ignored.

MAP_FIXED
Don’t interpretaddr as a hint: place the mapping at exactly that address.addr must be a mul-
tiple of the page size. If the memory region specified byaddr and len overlaps pages of any
existing mapping(s), then the overlapped part of the existing mapping(s) will be discarded.If
the specified address cannot be used,mmap() will f ail. Becauserequiring a fixed address for
a mapping is less portable, the use of this option is discouraged.

MAP_GROWSDOWN
This flag is used for stacks.It indicates to the kernel virtual memory system that the mapping
should extend downward in memory. The return address is one page lower than the memory
area that is actually created in the process’s virtual address space.Touching an address in the
"guard" page below the mapping will cause the mapping to grow by a page. Thisgrowth can
be repeated until the mapping grows to within a page of the high end of the next lower map-
ping, at which point touching the "guard" page will result in aSIGSEGV signal.

MAP_HUGETLB (since Linux 2.6.32)
Allocate the mapping using "huge pages."See the Linux kernel source fileDocumenta-
tion/vm/hugetlbpage.txt for further information, as well as NOTES, below.

MAP_HUGE_2MB , MAP_HUGE_1GB (since Linux 3.8)
Used in conjunction withMAP_HUGETLB to select alternative hugetlb page sizes (respec-
tively, 2 MB and 1 GB) on systems that support multiple hugetlb page sizes.

More generally, the desired huge page size can be configured by encoding the base-2 loga-
rithm of the desired page size in the six bits at the offsetMAP_HUGE_SHIFT . (A value of
zero in this bit field provides the default huge page size; the default huge page size can be dis-
covered vie theHugepagesize field exposed by/proc/meminfo.) Thus, the above two con-
stants are defined as:

#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
#define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)

The range of huge page sizes that are supported by the system can be discovered by listing the
subdirectories in/sys/kernel/mm/hugepages.

MAP_LOCKED (since Linux 2.5.37)
Mark the mmaped region to be locked in the same way asmlock(2). This implementation
will try to populate (prefault) the whole range but the mmap call doesn’t fail with ENOMEM
if this fails. Thereforemajor faults might happen later on. So the semantic is not as strong as
mlock(2). Oneshould usemmap() plusmlock(2) when major faults are not acceptable after
the initialization of the mapping. TheMAP_LOCKED flag is ignored in older kernels.

MAP_NONBLOCK (since Linux 2.5.46)
This flag is meaningful only in conjunction withMAP_POPULATE . Don’t perform read-
ahead: create page tables entries only for pages that are already present in RAM. Since Linux
2.6.23, this flag causesMAP_POPULATE to do nothing. One day, the combination of
MAP_POPULATE andMAP_NONBLOCK may be reimplemented.

Linux 2017-09-15 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

MAP_NORESERVE
Do not reserve swap space for this mapping. When swap space is reserved, one has the guar-
antee that it is possible to modify the mapping.When swap space is not reserved one might
getSIGSEGV upon a write if no physical memory is available. Seealso the discussion of the
file /proc/sys/vm/overcommit_memoryin proc(5). In kernels before 2.6, this flag had effect
only for private writable mappings.

MAP_POPULATE (since Linux 2.5.46)
Populate (prefault) page tables for a mapping.For a file mapping, this causes read-ahead on
the file. This will help to reduce blocking on page faults later. MAP_POPULATE is sup-
ported for private mappings only since Linux 2.6.23.

MAP_STACK (since Linux 2.6.27)
Allocate the mapping at an address suitable for a process or thread stack.This flag is cur-
rently a no-op, but is used in the glibc threading implementation so that if some architectures
require special treatment for stack allocations, support can later be transparently implemented
for glibc.

MAP_UNINITIALIZED (since Linux 2.6.33)
Don’t clear anonymous pages.This flag is intended to improve performance on embedded
devices. This flag is honored only if the kernel was configured with theCON-
FIG_MMAP_ALLOW_UNINITIALIZED option. Becauseof the security implications,
that option is normally enabled only on embedded devices (i.e., devices where one has com-
plete control of the contents of user memory).

Of the above flags, onlyMAP_FIXED is specified in POSIX.1-2001 and POSIX.1-2008.However,
most systems also supportMAP_ANONYMOUS (or its synonymMAP_ANON).

Memory mapped bymmap() is preserved acrossfork (2), with the same attributes.

A fi le is mapped in multiples of the page size.For a file that is not a multiple of the page size, the
remaining memory is zeroed when mapped, and writes to that region are not written out to the file.The
effect of changing the size of the underlying file of a mapping on the pages that correspond to added or
removed regions of the file is unspecified.

munmap()
The munmap() system call deletes the mappings for the specified address range, and causes further
references to addresses within the range to generate invalid memory references.The region is also
automatically unmapped when the process is terminated. On the other hand, closing the file descriptor
does not unmap the region.

The addressaddr must be a multiple of the page size (but lengthneed not be). All pages containing a
part of the indicated range are unmapped, and subsequent references to these pages will generate
SIGSEGV. It is not an error if the indicated range does not contain any mapped pages.

RETURN VALUE
On success,mmap() returns a pointer to the mapped area.On error, the valueMAP_FAILED (that is,
(void *) −1) is returned, anderrno is set to indicate the cause of the error.

On success,munmap() returns 0. On failure, it returns −1, anderrno is set to indicate the cause of the
error (probably toEINVAL).

ERRORS
EACCES

A file descriptor refers to a non-regular file. Or a file mapping was requested, but fd is not
open for reading.Or MAP_SHARED was requested andPROT_WRITE is set, but fd is not
open in read/write (O_RDWR) mode. OrPROT_WRITE is set, but the file is append-only.

EAGAIN
The file has been locked, or too much memory has been locked (seesetrlimit (2)).

EBADF
fd is not a valid file descriptor (andMAP_ANONYMOUS was not set).

EINVAL
We don’t like addr, length, or offset(e.g., they are too large, or not aligned on a page bound-
ary).

Linux 2017-09-15 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

EINVAL
(since Linux 2.6.12)lengthwas 0.

EINVAL
flagscontained neitherMAP_PRIVATE or MAP_SHARED, or contained both of these val-
ues.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
The underlying filesystem of the specified file does not support memory mapping.

ENOMEM
No memory is available.

ENOMEM
The process’s maximum number of mappings would have been exceeded. Thiserror can also
occur formunmap(), when unmapping a region in the middle of an existing mapping, since
this results in two smaller mappings on either side of the region being unmapped.

ENOMEM
(since Linux 4.7) The process’s RLIMIT_D AT A limit, described ingetrlimit (2), would have
been exceeded.

EOVERFLOW
On 32-bit architecture together with the large file extension (i.e., using 64-bitoff_t): the num-
ber of pages used forlength plus number of pages used foroffset would overflow unsigned
long (32 bits).

EPERM
The prot argument asks forPROT_EXEC but the mapped area belongs to a file on a filesys-
tem that was mounted no-exec.

EPERM
The operation was prevented by a file seal; seefcntl (2).

ETXTBSY
MAP_DENYWRITE was set but the object specified byfd is open for writing.

Use of a mapped region can result in these signals:

SIGSEGV
Attempted write into a region mapped as read-only.

SIGBUS
Attempted access to a portion of the buffer that does not correspond to the file (for example,
beyond the end of the file, including the case where another process has truncated the file).

ATTRIBUTES
For an explanation of the terms used in this section, seeattributes(7).

Interface Attrib ute Value
Thread safety MT-Safemmap(), munmap()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, 4.4BSD.

AV A ILABILITY
On POSIX systems on whichmmap(), msync(2), and munmap() are available,
_POSIX_MAPPED_FILES is defined in<unistd.h> to a value greater than 0. (See alsosysconf(3).)

NOTES
On some hardware architectures (e.g., i386),PROT_WRITE impliesPROT_READ. It is architecture
dependent whetherPROT_READ impliesPROT_EXEC or not. Portable programs should always set
PROT_EXEC if they intend to execute code in the new mapping.

The portable way to create a mapping is to specifyaddr as 0 (NULL), and omitMAP_FIXED from
flags. In this case, the system chooses the address for the mapping; the address is chosen so as not to
conflict with any existing mapping, and will not be 0. If theMAP_FIXED flag is specified, andaddr

Linux 2017-09-15 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

is 0 (NULL), then the mapped address will be 0 (NULL).

Certain flagsconstants are defined only if suitable feature test macros are defined (possibly by default):
_DEFAULT _SOURCE with glibc 2.19 or later; or_BSD_SOURCEor _SVID_SOURCE in glibc
2.19 and earlier. (Employing _GNU_SOURCE also suffices, and requiring that macro specifically
would have been more logical, since these flags are all Linux-specific.)The relevant flags are:
MAP_32BIT , MAP_ANONYMOUS (and the synonym MAP_ANON), MAP_DENYWRITE ,
MAP_EXECUTABLE , MAP_FILE , MAP_GROWSDOWN, MAP_HUGETLB , MAP_LOCKED ,
MAP_NONBLOCK , MAP_NORESERVE, MAP_POPULATE , andMAP_STACK .

An application can determine which pages of a mapping are currently resident in the buffer/page cache
usingmincore(2).

Timestamps changes for file-backed mappings
For file-backed mappings, thest_atimefield for the mapped file may be updated at any time between
the mmap() and the corresponding unmapping; the first reference to a mapped page will update the
field if it has not been already.

The st_ctimeandst_mtimefield for a file mapped withPROT_WRITE andMAP_SHARED will be
updated after a write to the mapped region, and before a subsequentmsync(2) with theMS_SYNC or
MS_ASYNC flag, if one occurs.

Huge page (Huge TLB) mappings
For mappings that employ huge pages, the requirements for the arguments ofmmap() andmunmap()
differ somewhat from the requirements for mappings that use the native system page size.

For mmap(), offset must be a multiple of the underlying huge page size. The system automatically
alignslengthto be a multiple of the underlying huge page size.

For munmap(), addr andlengthmust both be a multiple of the underlying huge page size.

C library/kernel differences
This page describes the interface provided by the glibcmmap() wrapper function.Originally, this
function invoked a system call of the same name. Since kernel 2.4, that system call has been super-
seded bymmap2(2), and nowadays the glibcmmap() wrapper function invokes mmap2(2) with a suit-
ably adjusted value foroffset.

BUGS
On Linux, there are no guarantees like those suggested above underMAP_NORESERVE. By default,
any process can be killed at any moment when the system runs out of memory.

In kernels before 2.6.7, theMAP_POPULATE flag has effect only if prot is specified as
PROT_NONE.

SUSv3 specifies thatmmap() should fail if length is 0. However, in kernels before 2.6.12,mmap()
succeeded in this case: no mapping was created and the call returnedaddr. Since kernel 2.6.12,
mmap() fails with the errorEINVAL for this case.

POSIX specifies that the system shall always zero fill any partial page at the end of the object and that
system will never write any modification of the object beyond its end. On Linux, when you write data
to such partial page after the end of the object, the data stays in the page cache even after the file is
closed and unmapped and even though the data is never written to the file itself, subsequent mappings
may see the modified content. In some cases, this could be fixed by callingmsync(2) before the unmap
takes place; however, this doesn’t work ontmpfs(5) (for example, when using the POSIX shared mem-
ory interface documented inshm_overview(7)).

EXAMPLE
The following program prints part of the file specified in its first command-line argument to standard
output. Therange of bytes to be printed is specified via offset and length values in the second and third
command-line arguments. Theprogram creates a memory mapping of the required pages of the file
and then useswrite (2) to output the desired bytes.

Program source
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

Linux 2017-09-15 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

#include <stdlib.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])
{

char *addr;
int fd;
struct stat sb;
off_t offset, pa_offset;
size_t length;
ssize_t s;

if (argc < 3 || argc > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == −1)

handle_error("open");

if (fstat(fd, &sb) == −1) /* To obtain file size */
handle_error("fstat");

offset = atoi(argv[2]);
pa_offset = offset & ˜(sysconf(_SC_PAGE_SIZE) − 1);

/* offset for mmap() must be page aligned */

if (offset >= sb.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);

}

if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)

length = sb.st_size − offset;
/* Can't display bytes past end of file */

} e lse { /* No length arg ==> display to end of file */
length = sb.st_size − offset;

}

addr = mmap(NULL, length + offset − pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);

if (addr == MAP_FAILED)
handle_error("mmap");

s = write(STDOUT_FILENO, addr + offset − pa_offset, length);
if (s != length) {

if (s == −1)
handle_error("write");

fprintf(stderr, "partial write");
exit(EXIT_FAILURE);

Linux 2017-09-15 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

MMAP(2) Linux Programmer’s Manual MMAP(2)

}

munmap(addr, length + offset − pa_offset);
close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
getpagesize(2), memfd_create(2), mincore(2), mlock(2), mmap2(2), mprotect(2), mremap(2),
msync(2), remap_file_pages(2), setrlimit (2), shmat(2), userfaultfd(2), shm_open(3), shm_over-
view(7)

The descriptions of the following files inproc(5): /proc/[pid]/maps, /proc/[pid]/map_files, and
/proc/[pid]/smaps.

B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129 and 389–391.

COLOPHON
This page is part of release 4.13 of the Linuxman-pages project. Adescription of the project, informa-
tion about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/2+munmap

