
MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

NAME
MIME::Head − MIME message header (a subclass of Mail::Header)

SYNOPSIS
Before reading further, you should see MIME::Tools to make sure that you understand where this
module fits into the grand scheme of things. Go on, do it now. I’l l wait.

Ready? Ok...

Construction
Create a new, empty header, and populate it manually:
$head = MIME::Head−>new;
$head−>replace('content−type', 'text/plain; charset=US−ASCII');
$head−>replace('content−length', $len);

Parse a new header from a filehandle:
$head = MIME::Head−>read(*STDIN);

Parse a new header from a file, or a readable pipe:
$testhead = MIME::Head−>from_file("/tmp/test.hdr");
$a_b_head = MIME::Head−>from_file("cat a.hdr b.hdr |");

Output
Output to filehandle:
$head−>print(*STDOUT);

Output as string:
print STDOUT $head−>as_string;
print STDOUT $head−>stringify;

Getting field contents
Is this a reply?
$is_reply = 1 if ($head−>get('Subject') =˜ /ˆRe: /);

Get receipt information:
print "Last received from: ", $head−>get('Received', 0);
@all_received = $head−>get('Received');

Print the subject, or the empty string if none:
print "Subject: ", $head−>get('Subject',0);

Too many hops? Count 'em and see!
if ($head−>count('Received') > 5) { ...

Test whether a given field exists
warn "missing subject!" if (! $head−>count('subject'));

Setting field contents
Declare this to be an HTML header:
$head−>replace('Content−type', 'text/html');

Manipulating field contents
Get rid of internal newlines in fields:
$head−>unfold;

Decode any Q− or B−encoded−text in fields (DEPRECATED):
$head−>decode;

Getting high-level MIME information

perl v5.24.1 2016-09-01 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

Get/set a given MIME attribute:
unless ($charset = $head−>mime_attr('content−type.charset')) {

$head−>mime_attr("content−type.charset" => "US−ASCII");
}

The content type (e.g., "text/html"):
$mime_type = $head−>mime_type;

The content transfer encoding (e.g., "quoted−printable"):
$mime_encoding = $head−>mime_encoding;

The recommended name when extracted:
$file_name = $head−>recommended_filename;

The boundary text, for multipart messages:
$boundary = $head−>multipart_boundary;

DESCRIPTION
A class for parsing in and manipulatingRFC−822message headers, with some methods geared towards
standard (and not so standard)MIME fields as specified in the various Multipurpose Internet Mail
ExtensionsRFCs (starting withRFC 2045)

PUBLIC INTERF ACE
Creation, input, and output

new [ARG],[OPTIONS]
Class method, inherited.Creates a new header object.Arguments are the same as those in the
superclass.

from_file EXPR,OPTIONS
Class or instance method. For convenience, you can use this to parse a header object in from
EXPR,which may actually be any expression that can be sent toopen()so as to return a readable
filehandle. The‘‘ file’’ w ill be opened, read, and then closed:

Create a new header by parsing in a file:
my $head = MIME::Head−>from_file("/tmp/test.hdr");

Since this method can function as either a class constructoror an instance initializer, the above is
exactly equivalent to:

Create a new header by parsing in a file:
my $head = MIME::Head−>new−>from_file("/tmp/test.hdr");

On success, the object will be returned; on failure, the undefined value.

The OPTIONS are the same as innew(), and are passed intonew() if this is invoked as a class
method.

Note: This is really just a convenience front-end ontoread() , provided mostly for backwards-
compatibility with MIME-parser 1.0.

readFILEHANDLE
Instance (or class) method.This initializes a header object by reading it in from aFILEHANDLE,
until the terminating blank line is encountered.A syntax error or end-of-stream will also halt
processing.

Supply this routine with a reference to a filehandle glob; e.g.,*STDIN :

Create a new header by parsing in STDIN:
$head−>read(*STDIN);

On success, the self object will be returned; on failure, a false value.

Note: in theMIME world, it is perfectly legal for a header to be empty, consisting of nothing but
the terminating blank line. Thus, we can’t just use the formula that ‘‘no tags equals error’’.

Warning: as of the time of this writing, Mail::Header::read did not flag either syntax errors or
unexpected end-of-file conditions (anEOF before the terminating blank line).MIME::ParserBase

perl v5.24.1 2016-09-01 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

takes this into account.

Getting/setting fields
The following are methods related to retrieving and modifying the header fields. Some are inherited
from Mail::Header, but I’ve kept the documentation around for convenience.

addTA G,TEXT,[INDEX]
Instance method, inherited.Add a new occurrence of the field namedTA G, given by TEXT:

Add the trace information:
$head−>add('Received',

'from eryq.pr.mcs.net by gonzo.net with smtp');

Normally, the new occurrence will beappendedto the existing occurrences.However, if the
optional INDEX argument is 0, then the new occurrence will beprepended. If you want to be
explicit about appending, specify anINDEX of −1.

Warning: this method always adds new occurrences; it doesn’t overwrite any existing
occurrences... so if you just want tochangethe value of a field (creating it if necessary), then you
probablydon’t want to use this method: consider usingreplace() instead.

countTA G
Instance method, inherited.Returns the number of occurrences of a field; in a boolean context,
this tells you whether a given field exists:

Was a "Subject:" field given?
$subject_was_given = $head−>count('subject');

TheTA G is treated in a case-insensitive manner. This method returns some false value if the field
doesn’t exist, and some true value if it does.

decode [FORCE]
Instance method,DEPRECATED.Go through all the header fields, looking forRFC 1522 / RFC 2047
style ‘‘Q’ ’ (quoted-printable, sort of) or ‘‘B’ ’ (base64) encoding, and decode them in-place.
Fellow Americans, you probably don’t know what the hell I’m talking about.Europeans,
Russians, et al, you probably do.:−) .

This method has been deprecated. See ‘‘decode_headers’’ in M IME::Parser for the full reasons.
If you absolutely must use it and don’t like the warning, then provide aFORCE:

"I_NEED_TO_FIX_THIS"
Just shut up and do it. Not recommended.
Provided only for those who need to keep old scripts functioning.

"I_KNOW_WHAT_I_AM_DOING"
Just shut up and do it. Not recommended.
Provided for those who REALLY know what they are doing.

What this method does.For an example, let’s consider a valid email header you might get:

From: =?US−ASCII?Q?Keith_Moore?= <moore AT cs DOT utk DOT edu>
To: =?ISO−8859−1?Q?Keld_J=F8rn_Simonsen?= <keld AT dkuug DOT dk>
CC: =?ISO−8859−1?Q?Andr=E9_?= Pirard <PIRARD AT vm1 DOT ulg DOT ac DOT be>
Subject: =?ISO−8859−1?B?SWYgeW91IGNhbiByZWFkIHRoaXMgeW8=?=

=?ISO−8859−2?B?dSB1bmRlcnN0YW5kIHRoZSBleGFtcGxlLg==?=
=?US−ASCII?Q?.._cool!?=

That basically decodes to (sorry, I can only approximate the Latin characters with 7 bit sequences
/o and ’e):

From: Keith Moore <moore AT cs DOT utk DOT edu>
To: Keld J/orn Simonsen <keld AT dkuug DOT dk>
CC: Andr'e Pirard <PIRARD AT vm1 DOT ulg DOT ac DOT be>
Subject: If you can read this you understand the example... cool!

Note: currently, the decodings are done without regard to the character set: thus, the Q−encoding
=F8 is simply translated to the octet (hexadecimalF8), period. For piece-by-piece decoding of a

perl v5.24.1 2016-09-01 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

given field, you want the array context ofMIME::Words::decode_mimewords() .

Warning: the CRLF+SPACE separator that splits up long encoded words into shorter sequences
(see the Subject: example above) gets lost when the field is unfolded, and so decoding after
unfolding causes a spurious space to be left in the field.THEREFORE:if you’re going to decode,
do soBEFOREunfolding!

This method returns the self object.

Thanks to Kent Boortz for providing the idea, and the baseline RFC−1522−decoding code.

deleteTA G,[INDEX]
Instance method, inherited.Delete all occurrences of the field namedTA G.

Remove some MIME information:
$head−>delete('MIME−Version');
$head−>delete('Content−type');

getTA G,[INDEX]
Instance method, inherited.Get the contents of fieldTA G.

If a numeric INDEX is given, returns the occurrence at that index, or undef if not present:

Print the first and last 'Received:' entries (explicitly):
print "First, or most recent: ", $head−>get('received', 0);
print "Last, or least recent: ", $head−>get('received',−1);

If no INDEX is given, but invoked in ascalarcontext, thenINDEX simply defaults to 0:

Get the first 'Received:' entry (implicitly):
my $most_recent = $head−>get('received');

If no INDEX is given, and invoked in an array context, then all occurrences of the field are
returned:

Get all 'Received:' entries:
my @all_received = $head−>get('received');

NOTE: The header(s) returned may end with a newline. If you don’t want this, thenchomp the
return value.

get_allFIELD
Instance method.Returns the list ofall occurrences of the field, or the empty list if the field is not
present:

How did it get here?
@history = $head−>get_all('Received');

Note: I had originally experimented with having get() return all occurrences when invoked in
an array context... but that causes a lot of accidents when you get careless and do stuff l ike this:

print "\u$field: ", $head−>get($field);

It also made the intuitive behaviour unclear if theINDEX argument was given in an array context.
So I opted for an explicit approach to asking for all occurrences.

print [OUTSTREAM]
Instance method, override. Print the header out to the given OUTSTREAM, or the currently-
selected filehandle if none.TheOUTSTREAM may be a filehandle, or any object that responds to
aprint() message.

The override actually lets you print to any object that responds to aprint() method. Thisis vital
for outputtingMIME entities to scalars.

Also, it defaults to thecurrently-selectedfilehandle if none is given (not STDOUT!), so please
supply a filehandle to prevent confusion.

stringify
Instance method.Return the header as a string.You can also invoke it as as_string .

perl v5.24.1 2016-09-01 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

unfold [FIELD]
Instance method, inherited.Unfold (remove newlines in) the text of all occurrences of the given
FIELD. If the FIELD is omitted,all fields are unfolded. Returns the ‘‘self ’’ object.

MIME-specific methods
All of the following methods extract information from the following fields:

Content−type
Content−transfer−encoding
Content−disposition

Be aware that they do not just return the raw contents of those fields, and in some cases they will fill in
sensible (I hope) default values. Useget() or mime_attr() if you need to grab and process the
raw field text.

Note: some of these methods are provided both as a convenience and for backwards-compatibility only,
while others (like recommended_filename()) really do have to be in MIME::Head to work properly,
since they look for their value in more than one field.However, if you know that a value is restricted to
a single field, you should really use the Mail::Field interface to get it.

mime_attrATTR,[VALUE]
A quick-and-easy interface to set/get the attributes in structuredMIME fields:

$head−>mime_attr("content−type" => "text/html");
$head−>mime_attr("content−type.charset" => "US−ASCII");
$head−>mime_attr("content−type.name" => "homepage.html");

This would cause the final output to look something like this:

Content−type: text/html; charset=US−ASCII; name="homepage.html"

Note that the special empty sub-field tag indicates the anonymous first sub-field.

Giving VALUE as undefinedwill cause the contents of the named subfield to be deleted:

$head−>mime_attr("content−type.charset" => undef);

Supplying noVALUE argument just returns the attribute’s value, or undefined if it isn’t there:

$type = $head−>mime_attr("content−type"); ### text/html
$name = $head−>mime_attr("content−type.name"); ### homepage.html

In all cases, the new/current value is returned.

mime_encoding
Instance method.Try real hard to determine the content transfer encoding (e.g.,"base64" ,
"binary"), which is returned in all-lowercase.

If no encoding could be found, the default of"7bit" is returned I quote fromRFC 2045section
6.1:

This is the default value −− that is, "Content−Transfer−Encoding: 7BIT"
is assumed if the Content−Transfer−Encoding header field is not present.

I do one other form of fixup: ‘‘7_bit’’, ‘ ‘7−bit’’, and ‘‘7 bit’’ are corrected to ‘‘7bit’ ’; lik ewise for
‘‘ 8bit’’.

mime_type [DEFAULT]
Instance method.Try real hard to determine the content type (e.g.,"text/plain" ,
"image/gif" , "x−weird−type" , which is returned in all-lowercase. ‘‘Real hard’’ means
that if no content type could be found, the default (usually"text/plain") is returned. From
RFC 2045section 5.2:

Default RFC 822 messages without a MIME Content−Type header are
taken by this protocol to be plain text in the US−ASCII character
set, which can be explicitly specified as:

Content−type: text/plain; charset=us−ascii

perl v5.24.1 2016-09-01 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

This default is assumed if no Content−Type header field is specified.

Unless this is a part of a ‘‘multipart/digest’’, in which case ‘‘message/rfc822’’ is the default. Note
that you can alsoset the default, but you shouldn’t: normally only theMIME parser uses this
feature.

multipart_boundary
Instance method.If this is a header for a multipart message, return the ‘‘encapsulation boundary’’
used to separate the parts.The boundary is returned exactly as given in the Content−type:
field; that is, the leading double-hyphen (−−) is notprepended.

Well, almostexactly... this passage fromRFC 2046dictates that we remove any trailing spaces:

If a boundary appears to end with white space, the white space
must be presumed to have been added by a gateway, and must be deleted.

Returns undef (not the empty string) if either the message is not multipart or if there is no
specified boundary.

recommended_filename
Instance method.Return the recommended external filename. This is used when extracting the
data from theMIME stream. Thefilename is always returned as a string in Perl’s internal format
(theUTF8 flag may be on!)

Returns undef if no filename could be suggested.

NOTES
Why hav eseparate objects for the entity, head, and body?

See the documentation for the MIME-tools distribution for the rationale behind this decision.

Why assume thatMIME headers are email headers?
I quote from Achim Bohnet, who gav efeedback on v.1.9 (I think he’s using the word ‘‘header’’
where I would use ‘‘field’’; e.g., to refer to ‘‘Subject:’’, ‘‘Content-type:’’, etc.):

There is also IMHO no requirement [for] MIME::Heads to look
like [email] headers; so to speak, the MIME::Head [simply stores]
the attributes of a complex object, e.g.:

new MIME::Head type => "text/plain",
charset => ...,
disposition => ..., ... ;

I agree in principle, but (alas and dammit)RFC 2045says otherwise.RFC 2045[MIME] headers are
a syntactic subset ofRFC−822[email] headers.

In my mind’s eye, I see an abstract class, call it MIME::Attrs, which does what Achim suggests...
so you could say:

my $attrs = new MIME::Attrs type => "text/plain",
charset => ...,
disposition => ..., ... ;

We could even make it a superclass of MIME::Head: that way, MIME::Head would have to
implement its interface,andallow itself to be initialized from a MIME::Attrs object.

However, when you readRFC 2045,you begin to see how muchMIME information is organized by
its presence in particular fields.I imagine that we’d begin to mirror the structure ofRFC 2045
fields and subfields to such a degree that this might not give us a tremendous gain over just having
MIME::Head.

Why all this ‘‘occurrence’’ and ‘‘index’’ j azz? Isn’t every field unique?
Aaaaaaaaaahh....no.

Looking at a typical mail message header, it is sooooooo tempting to just store the fields as a hash
of strings, one string per hash entry. Unfortunately, there’s the little matter of theReceived:
field, which (unlikeFrom: , To: , etc.) will often have multiple occurrences; e.g.:

perl v5.24.1 2016-09-01 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

MIME::Head(3pm) UserContributed Perl Documentation MIME::Head(3pm)

Received: from gsfc.nasa.gov by eryq.pr.mcs.net with smtp
(Linux Smail3.1.28.1 #5) id m0tStZ7−0007X4C;

Thu, 21 Dec 95 16:34 CST
Received: from rhine.gsfc.nasa.gov by gsfc.nasa.gov

(5.65/Ultrix3.0−C) id AA13596;
Thu, 21 Dec 95 17:20:38 −0500

Received: (from eryq@localhost) by rhine.gsfc.nasa.gov
(8.6.12/8.6.12) id RAA28069;
Thu, 21 Dec 1995 17:27:54 −0500

Date: Thu, 21 Dec 1995 17:27:54 −0500
From: Eryq <eryq AT rhine DOT gsfc DOT nasa DOT gov>
Message−Id: <199512212227 DOT RAA28069 AT rhine DOT gsfc DOT nasa DOT gov>
To: eryq AT eryq DOT pr DOT mcs DOT net
Subject: Stuff and things

TheReceived: field is used for tracing message routes, and although it’s not generally used for
anything other than human debugging, I didn’t want to inconvenience anyone who actually wanted
to get at that information.

I also didn’t want to make this a special case; after all, who knows what other fields could have
multiple occurrences in the future?So, clearly, multiple entries had to somehow be stored
multiple times... and the different occurrences had to be retrievable.

SEE ALSO
Mail::Header, Mail::Field, MIME::Words, MIME::Tools

AUTHOR
Eryq (eryq AT zeegee DOT com), ZeeGee Software Inc (http://www.zeegee.com). DianneSkoll (dfs AT
roaringpenguin DOT com) http://www.roaringpenguin.com

All rights reserved. Thisprogram is free software; you can redistribute it and/or modify it under the
same terms as Perl itself.

The more-comprehensive filename extraction is courtesy of Lee E. Brotzman, Advanced Data
Solutions.

perl v5.24.1 2016-09-01 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Head

