Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)
NAME

MIME-tools — modules for parsing (and creating!) MIME entities
SYNOPSIS

Here's some pretty basic code fparsing aMIME messageand outputting its decoded components to
a gven directory:

use MIME::Parser;

Create parser, and set some parsing options:
my $parser = new MIME::Parser;
$parser—>output_under("$SENV{HOME}/mimemail");

Parse input:
$entity = $parser—>parse(*STDIN) or die "parse failed\n";

Take a look at the top—level entity (and any parts it has):
$entity—>dump_skeleton;

Heres some code whicltomposes and sends MIME messagecontaining three parts: a text file, an
attachedsIF, and some more text:

use MIME::Entity;

Create the top—level, and set up the mail headers:

$top = MIME::Entity—>build(Type =>"multipart/mixed",
From => "me\ AT myhost DOT com",
To => ‘"you\ AT yourhost DOT com",

Subject => "Hello, nurse!");

##t Part #1: a simple text document:
$top—>attach(Path=>"./testin/short.txt");

Part #2: a GIF file:

$top—>attach(Path = "./docs/mime-sm.gif",
Type => "image/gif",
Encoding => "base64");

##Ht Part #3: some literal text:
$top—>attach(Data=>$message);

Send it:
open MAIL, "| /usr/lib/sendmail -t —oi —oem" or die "open: $!";
$top—>print(*"MAIL);
close MAIL;
For more examples, look at the scripts in th@mplesdirectory of the MIME-tools distribution.

DESCRIPTION
MIME-tools is a collection of PerlMIME:: modules for parsing, decodingnd generatingsingle— or
multipart (ezen nested multipartMIME messages. @6, kids, that means you can send messages with
attachedsIF files).

REQUIREMENTS
You will need the following installed on your system:

perl v5.24.1 2016-09-01 1

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

File::Path

File::Spec

IPC::Open2 (optional)
MIME::Base64

MIME::QuotedPrint

Net::SMTP

Mail::Internet, ... from the MailTools distribution.

See the Makefile.PL in your distribution for the most-comprekierisit of prerequisite modules and
their version numbers.

A QUICK TOUR
Overview of the classes
Here are the classes you'll generally be dealing with directly:

(START HERE) results() . .
\ . >| MIME:: |
= .o | P arser::Results |
| MIME:: [—-' : '
| Parser [——. . .
T B filer() | MIME:: |
| p arse() T >| Parser::Filer |
| g ivesyou) '
| a.. | output_path()
| | determines
| | path() of...
| h ead() S . |
| r eturns... | MIME:: | get() |
\% L >| Head | e tc... |
S A T ' |
———>| MIME:: | |
T | Entity | = . |
parts() "———————- \ | MIME:: | /
returns T >| Body |<-————————- '
sub-entities bodyhandle() T '
(if any) returns... | open()
| r eturns...
|
Y,
= . read()
| 1 O | getline()
| Handle | print()
T "etc...

To illustrate, parsing works this way:

 The “parser’’ parses theMIME stream. A parser is an instance MIME::Parser . You hand
it an input stream (ld& a flehandle) to parse a message from: if the parse is successful, the result
is an “entity”.

A parsed message isepresented by an‘entity”. An entity is an instance &flIME::Entity
(a subclass oMail::Internet). If the message hatparts” (e.g., attachments), then those
parts are‘éntities” as well, contained inside the topv entity. Each entity has aHead’ and a
“body”.

 The entity’'s “head” contains information about the message.A ‘‘head’ is an instance of
MIME::Head (a subclass oMail::Header). It contains information from the message
header: content type, sendarbject line, etc.

» The entity’s “body’’ k nows where the message data isYou can ask to‘dpen’ this data source
for readingor writing, and you will get back an “I/O handle”.

* You canopen() a “body’’ and get an “I/O handle” to r ead/write message dataThis handle is
an object that is basically Bkan D::Handle... itcan be ayp class, so long as it supports a small,

perl v5.24.1 2016-09-01 2

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

standard set of methods for reading from or writing to the underlying data source.

A typical multipart message containingatyparts — atextual greeting and arattached” GIF file —
would be a tree of MIME::Entity objects, each of which wouldéhits own MIME::Head. Lile this:

| MIME:: | Content-type: multipart/mixed
| E ntity | Subject: Happy Samhaine!

parts |
| . mmm————— .
|-—=] MIME:: | Content-type: text/plain; charset=us—ascii
| | Entity | Content—transfer—-encoding: 7bit

| . mmm————— .
|[-—=] MIME:: | Content-type: image/gif
| E ntity | Content-transfer—encoding: base64
T ' Content—disposition: inline;
filename="hs.gif"

Parsing messages
You usually start by creating an instanceMME::Parser and setting up certain parsing parameters:
what directory to sa& exracted files to, hw to name the files, etc.

You then gve that instance a readable filehandle on which waittE message. I&ll goes well, you
will get back aMIME::Entity object (a subclass ®ail::Internet), which consists of...

« A MIME::Head (a subclass dffail::Header) which holds theviME header data.

- A MIME::Body , which is a object that knows where the body dataYwmu ask this object to
“open’ itself for reading, and it will hand you back an “I/O handf@r reading the data: this
could be of anclass, so long as it conforms to a subset of@heéHandle interface.

If the original message was a multipart document, the MIME::Entity object wdl haon-empty list
of “parts”, each of which is in turn a MIME::Entity (which might also be a multipart erdity etc...).

Internally the parser (in MIME::Parser) asks for instance$t¥IE::Decoder wheneer it needs to
decode an encoded file. MIME::Decoder has a mapping from supported encodings (e.g., 'base64’) to
classes whose instances can decode thémn. can add to this mapping to try outwiexperiment
encodings. ¥u can also use MIME::Decoder by itself.

Composing messages
All message composition is done via ti&ME::Entity class. Br single-part messages, you can use
the MIME::Entity/build constructor to creatdIME entities very easily.

For multipart messages, you can start by creating a togb-lenultipart entity with
MIME::Entity::build(), and then use the similéil ME::Entity::attach() method to attach parts to that
message.Please notewhat most people think of as “a text message with an attacledile” is
really a multipart message with 2 parts: the first being thx tmeessage, and the second beingGlre
file.

When huilding MIME a entity, you'll have o provide two very important pieces of information: the
content typend thecontent transfer encodinglhe type is usually easgs t is directly determined by

the file format; e.g., aRTML file is text/html . The encoding, heever, is tickier... for example,
someHTML files are7bit —compliant, but others might Y& vey long lines and would need to be sent
guoted-printable for reliability.

See the section on encoding/decoding for more details, as wallBVME PRIMER” below.

Sending email
Since MIME::Entity inherits directly from Mail::Internet, you can use the normal Mail::Internet
mechanisms to send emaklior example,

$entity—>smtpsend;

perl v5.24.1 2016-09-01 3

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org
MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)
Encoding/decoding support

The MIME::Decoder class can be used émcodeas well; this is done when printingIME entities.
All the standard encodings are supported (de®IME PRIMER” below for details):

Encoding: | Normally used when message contents are:

7hit | 7-bit data with under 1000 chars/line, or multipart.
8hit | 8-bit data with under 1000 charsl/line.

binary | 8-bit data with some long lines (or no line breaks).
guoted-—printable | Text files with some 8-bit chars (e.g., Latin—1 text).
base64 | Binary files.

Which encoding you choose for avgi document depends largely on (1) what youwrabout the
document oontents (text vs binary), and (2) whether you need the resulting message togiable
encoding for 7-bit Internet email transport.

In general, onlyguoted—printable andbase64 guarantee reliable transport of all data; the other
three ‘no-encoding’ encodings simply pass the data through, and are only reliable if that data is 7bit
ASCII with under 1000 characters per line, and has no conflicts with the multipart boundaries.

I've mnsidered making it so that the content-type and encoding can be automatically inferred from the
file's path, but that seems to be asking for trouble... or at least, for Mail::Cap...

Message-logging
MIME-tools is a large and compleoolkit which tries to deal with a wide variety of external inpits
sometimes helpful to see whatéally going on behind the scenes. There averakkinds of messages
logged by the toolkit itself:

Debug messages
These are printed directly to t88 DERR,with a prefix of'MIME-tools: debug"

Dehug message are only logged if youvdaturned ‘debugging’ on in the MIME::Tools
configuration.

Warning messages
These are logged by the standard Rextn() mechanism to indicate an unusual situatidiey
all have a pefix of "MIME-tools: warning"

Warning messages are only loggedbiiV is set true and MIME:dols is not configured to be
“quiet”.
Error messages

These are logged by the standard Reatn() mechanism to indicate that something actually
failed. They al have a pefix of "MIME-tools: error"

Error messages are only logged$iw is set true and MIME:dols is not configured to be
“quiet”.
Usage messages

Unlike “typical’” warnings abee, which warn about problems processing data, usagerwgs
are for alerting deelopers of deprecated methods and suspiciousations.

Usage messages are currently only logg&dW is set true and MIME::Tools is not configured to

be “quiet”.
When a MIME::Rrser (or one of its internal helper classes) wants to report a message, it generally
does so by recording the message toMHME::Parser::Results object immediately before woking
the appropriate function abe That means each parsing run has its own trace-log which can be
examined for problems.

Configuring the toolkit
If you want to tweak the way this toolkitorks (for example, to turn on debugging), use the routines in
the MIME::Tools module.

debugging
Turn debugging on or &f Default is false (off).

perl v5.24.1 2016-09-01 4

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

MIME::Tools—>debugging(1);

quiet
Turn the reporting of warning/error messages on oif.oDefault is true, meaning that these
message are silenced.

MIME::Tools—>quiet(1);

version
Return the toolkit version.

print MIME:: Tools—>version, "\n";

THINGS YOU SHOULD DO
Take a look at the examples
The MIME-Tools distribution comes with alexamples’ directory. The scripts in there are basically
just tossed-togethgut they'll give you some ideas of oto use the parser.

Run with warnings enabled
Alwaysrun your Perl script with-w. If you see a warning about a deprecated method, change your
codeASAP. This will ease upgrades tremendously.

Avoid non-standard encodings
Don't try to MIME-encode using the non-standMtME encodings. I8 just not a good practice if you
want people to be able to read your messages.

Plan for thr own exceptions
For example, if your mail-handling code absolutely must not die, then perform mail parsrigdik

$entity = eval { $parser—>parse(*INPUT) };

Pasing is a compbe process, and some components maywthezceptions if seriously-bad things
happen. Since seriously-bad’is in the ge of the beholderyou're better df catching possible
exceptions instead of asking me to proggundef up the stack.Use of exceptions in reusable
modules is one of those religious issues we'neendl going to agree upon; thankfullshat's what
eval{} is good for.

Check the parser results for warnings/errors
As of 5.3xx, the parser tries extremely hard tegou a MIME::Entity If there were anproblems, it
logs warnings/errors to the underlyingesults’ object (see MIME::Brser::Results). Lookt that
object after each parse. Print out the warnings and easpgciallyif messages dohparse the \ay
you thought thg would.

Don't plan on printing exactly what you parsed!
Parsing is a (slightly) lossy opation. Because of things lé& anbiguities in base64-encoding, the
following is notgoing to spit out its input unchanged in all cases:

$entity = $parser—>parse(*STDIN);
$entity—>print(*STDOUT);

If you're using MIME::Tools to process email, remember toestae data you parse if you want to send
it on unchanged. This is vital for thingsdilfGP-signed email.

Understand how international characters are represented
The MIME standard allows for text strings in headers to contain characters fsoomanacter set, by
using special sequences which looleltkis:

=?1S0-8859-17Q?Keld_J=F8rn_Simonsen?=

To be mnsistent with the existing Mail::Field classes, MIME::Tools doesautomatically unencode
these strings, since doing so would lose the charaetanformation and interfere with the parsing of
fields (see‘tdecode_headersin MIME::Parser for a full gplanation). Thatmeans you should be
prepared to deal with these encoded strings.

The most common question thenhsw do | decode these encoded stringsPhe answer depends on
what you want to decode themo: ASCII, Latinl, UTF-8, etc. Be awae that your ‘target”
representation may not support all possible character sets you might encounteanfplee Latinl
(1S0-8859-) has no way of representing Bigs (Chinese) charactérscommon practice is to
represent “untranslateable’haracters as “B, or to ignore them completely.

perl v5.24.1 2016-09-01 5

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

To wnencode the strings into some of the more-populastévn byte representations (e.g., Latinl,
Latin2, etc.), you can use the decoders in MIMB©riiDecoder (see MIME::@WfdDecoder). The
simplest way is by usinanmime() , a function wrapped around your “defaulfecodeyas bllows:

use MIME::WordDecoder;

$subject = unmime $entity—>head->get('subject’);

One place thiss done automatically is in extracting the recommended filename for a part while
parsing. That why you should start by setting up the bedefault” decoder if the default target of
Latinl isnt to your liking.

THINGS | DO THAT YOU SHOULD KNOW ABOUT
Fuzzing of CRLF and newline on input
RFC 2045dictates thatMIME streams hee lines terminated byCRLF (\r\n"). However, it is
extremely likely that folks will want to parsdiIME streams where each line ends in the locualline
charactef\n" instead.

An attempt has been made to allthe parser to handle boftRLF and newline-terminated input.

Fuzzing of CRLF and newline when decoding
The"7bit" and"8hit" decoders will decode both"@m" and a"\r\n" end-of-line sequence
into a"\n"

The "binary" decoder (default if no encoding specified) still outputsf stefbatim... so avMIME
message with CRLFs and no explicit encoding will be output at dileethat, on may systems, will
have a1 annoying "M at the end of each lindaut this is as it should be

Fuzzing of CRLF and newline when encoding/composing
TODO FIXME All encoders currently output the end-of-line sequence'&s'a, with the assumption
that the local mail agent will perform the eersion from newline taCRLF when sending the mail.
However, there probably should be an option to outpBLF as peiRFC 2045

Inability to handle multipart boundaries with embedded newlines
Let's get something straight: this is awile EVIL practice. Ifyour mailer creates multipart boundary
strings that contain newlinesygiit two weeks notice and find another one. If your mail robot vesei
MIME malil like this, regard it as syntactically incorrect, which it is.

Ignoring non-header headers
People lilke to hand the parser vamessages straight fromOP3or from a mailbox. There is often
predictable non-header information in front of the real headers; e.g., the IRt@ah” line in the
following message:

From - Wed Mar 22 02:13:18 2000
Return—Path: <eryq AT zeegee DOT com>
Subject: Hello

The parser simply ignores such $tyfiietly. Perhaps it shouldn't, but most people seem to want that
behavior.

Fuzzing of empty multipart preambles
Please note that there is currently an ambiguity in the way preambles are parfed follonving
message fragmentsoth are rgarded as having an empty preamble (whereindicates a n&line
character):

Content-type: multipart/mixed; boundary="xyz"\n
Subject: This message (#1) has an empty preamble\n
\n

——xyz\n

Content-type: multipart/mixed; boundary="xyz"\n

Subject: This message (#2) also has an empty preamble\n
\n

\n

——xyz\n

perl v5.24.1 2016-09-01 6

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

In both cases, thiirst completely-empty line (after the “Subject”) marks the end of the header.

But we should clearly ignore tlsecondempty line in message #2, since it fills the rolé thie nevline
which is anly thee to nake are that the boundary is at the beginning of a linegduch newlines are
neverpart of the content preceding the boundary; thus, there is no preamble “Conter@ssage #2.

However, it seems clear that message #%0 has no preamblécontent’, and is in fact merely a
compact representation of an empty preamble.

Use of a temp file during parsing
Why not do eerything in coe? Although the amount of corevalable on @en a nodest home system
continues to gne, the size of attachments continues tovgkeith it. | wanted to mad sure that gen
users with small systems could deal with decoding mulgamge sounds and movie filesThat
means not being core-bound.

As of the released 5.3xx, MIME::Parser gets by with only one temp file open per Fdniseiemp file
provides a sort of infinite scratch space for dealing with the current messageltizafast and
lightweight, but you should kmoabout it anyway.

Why do | assume thatMIME objects are email objects?
Achim Bohnet once pointed out th&tIME headers do nothing more than store a collection of
attributes, and thus could be represented as objects whidhirdwarit from Mail::Header.

| agree in principle, bt RFC 2045says otherwiseRFC 2045[MIME] headers are a syntactic subset of
RFC-822[email] headersPerhaps a better name for these modules wouwiel IenRFC1521:instead
of MIME:;, but we're a little beyond that stagewo

When | originally wrote these modules for thBaN, | agonized for a long time about whether or not
they really should subclass froMail::Internet (then at version 1.17). Thanks to Graham Baho
graciously golved MailTools 1.06 to be more MIME-friendlynification was achied a MIME-tools
release 2.0. The benefits in reuse alone lilaen substantial.

A MIME PRIMER
So you need to parse (or crea¥®)E, but you're not quite up on the specifics? No problem...

Glossary
Here are some definitions adapted freRC 1521(predecessor of the curreREC 204[56789] defining
MIME) explaining the terminology we use; each is accompanied by thgakmdiin MIME:: module
terms...
attachment
An “attachment’is common slang for anpart of a multipart message- except, perhaps, for the

first part, which normally carries a user message describing the attachments tha{dajlo
“Hey dude, heres thatGIF file | promised you.).

In our system, an attachment is jusIBME::Entity under the top-kel entity, probably one of
its parts.
body

The *body” of an entity is that portion of the entity which follows the header and which contains
the real message conterfior example, if yourMIME message has@lF file attachment, then the
body of that attachment is the base64—-encaigdile itself.

A body is represented by an instanceVbME::Body . You get the body of an entity by sending
it abodyhandle(nessage.

body part
One of the parts of the body of a multipamtity. A body part has &headerand a/body, so t
makes sense to speak about the body of a body part.
Since a body part is just a kind of entitys represented by an instanceMiME::Entity .

entity
An “entity’’ means either fmessager a/body part. All entities hae a/headerand a/body.

An entity is represented by an instance MMME::Entity . There are instance methods for
recovering the header (®IIME::Head) and the body (MIME::Body).

perl v5.24.1 2016-09-01 7

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

header

This is the top portion of th®IME message, which contains tHEdntent-type”, ‘‘Content-
transfer-encoding’ etc. Every MIME entity has a headerepresented by an instance of
MIME::Head . You get the header of an entity by sendinghead()message.

message

A ‘‘message’generally means the complete (Gop-level’) message being transferred on a
network.

There currently is no explicit package fanéssage§' under MIME::, messages are streams of
data which may be read in from files or filehandésu can think of theMIME::Entity returned
by theMIME::Parser as representing the full message.

Content types
This indicates what kind of data is in thdME message, usually amajortype/minortype The
standard major types are shown beldA more-comprehengt listing may be found iRFC-2046.
application
Data which does not fit in srof the other catgories, particularly data to be processed by some

type of application program.application/octet—stream , application/gzip
application/postscript

audio
Audio data. audio/basic
image
Graphics dataimage/gif , image/jpeg
message
A message, usually another mailMIME messagemessage/rfc822

multipart
A message containing other messagaesiltipart/mixed , multipart/alternative

text Textual data, meant for humans to reaext/plain , text/html

video
Video or video+audio datasideo/mpeg

Content transfer encodings

This is hav the message body is packaged up for safe trafb#re are the 5 majoMIME encodings.

A more-comprehenge listing may be found iRFC-2045.

7bit
No encoding is done at all. This label simply asserts that no 8-bit characters are present, and that
lines do not exceed 1000 characters in length (includingRue€).

8bit
No encoding is done at allThis label simply asserts that the message might contain 8-bit
characters, and that lines do not exceed 1000 characters in length (includiryfhe

binary
No encoding is done at allThis label simply asserts that the message might contain 8-bit
characters, and that lines mayceed 1000 characters in length. Such messages ateatite
likely to get through mail gateays.

base64

A standard encoding, which maps arbitrary binary data to the 7bit dorni&ie.“uuencodée; but
very well-defined. This is he you should send essentially binary information (tar files, GIFs,
JPEGsS, etc.).

guoted-printable

A standard encoding, which maps arbitrary line-oriented data to the 7bit domain. Useful for
encoding messages which argttal in nature, yet which contain non-ASCIl characters (e.g.,
Latin—1, Latin—2, or apother 8-bit alphabet).

SEE ALSO
MIME::Parsey MIME::Head, MIME::Body MIME::Entity, MIME::Decoder Mail::Header,
Mail::Internet

perl v5.24.1 2016-09-01 8

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MIME::Tools(3pm) UseContributed Perl Documentation MIME::Tools(3pm)

At the time of this writing, the MIME-tools homepage aw
http://www.mimedefang.org/static/mime—tools.ptgheck there for updates and support.

TheMIME format is documented in RFCs 1521-1522, and more recently in RFCs 2045-2049.
TheMIME header format is an outgrowth of the mail header format documeredia22.

SUPPORT
Please file support requests via rt.cpan.org.

CHANGE LOG
Released as MIME-parser (1.0): 28 April 1996. Released as MIME-tools (2.0)weelio1996.
Released as MIME-tools (4.0): Christmas 1997. Released as MIME-tools (5.0): M@ 2000.

See Changelog file for full details.

AUTHOR
Eryq eryq AT zegee DOT @wm), ZeeGee Softare Inc bittp://www.zegeecom). DianneSkoll (dfs A
roaringpenguin DA com) http://www.roaringpenguin.com

Copyright (c) 1998, 1999 by ZeeGee Software Inc (wxagee.com). Caogright (c) 2004 by Roaring
Penguin Software Inc (www.roaringpenguin.com)

This program is free software; you can redistribute it and/or modify it under the same terms as Perl

itself.
See theCOPYINGfile in the distribution for details.
ACKNOWLEDGMENTS

This kit would not have been possibléut for the direct contributions of the following:
Gisle Aas The MIME encoding/decoding modules.
Laurent Amon Bug reports and suggestions.
Graham Barr The new MailTools.
Achim Bohnet Numerous good suggestions, including the 1/0 model.
Kent Boortz Initial code for RFC-1522-decoding of MIME headers.
Andreas Koenig Numerous good ideas, tons of beta testing,

and help with CPAN-friendly packaging.

Igor Starovoitov Bug reports and suggestions.
Jason L Tibbitts 1l Bug reports, suggestions, patches.

Not to mention the Accidental Beta Test Team, whose bug reports (and commesmtsheba
invaluable in improving the whole:

Phil Abercrombie
Mike Blazer
Brandon Browning
Kurt Freytag

Steve Kilbane
Jake Morrison

Rolf Nelson

Joel Noble

Michael W. Normandin
Tim Pierce

Andrew Pimlott
Dragomir R. Radev
Nickolay Saukh
Russell Sutherland
Larry Virden

Zyx

Please forgie e if I've accidentally left you out. Better yet, email me, and I'll put you in.

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

See theCOPYINGfile for more details.

perl v5.24.1 2016-09-01 9

https://man.m.sourcentral.org/ubuntu1710/3+MIME::Tools

