Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

NAME
MLDBM - store multi—level Perl hash structure in singlevig tied hash

SYNOPSIS
use MLDBM; # t his gets the default, SDBM
#use MLDBM gw(DB_File FreezeThaw); # use FreezeThaw for serializing
#use MLDBM gw(DB_File Storable); # use Storable for serializing

$dbm = tie %o, '"MLDBM' [..other DBM args..] or die $!;

DESCRIPTION
This module can seevas a tansparent interface to WITIEHASH package that is required to store
arbitrary perl data, including nested referencébus, this module can be used for storing references
and other arbitrary data withibBM databases.

It works by serializing the references in the hash into a single string. In the unddligingSH
package (usually @BM database), it is this string that gets stored. When the value is fetched again, the
string is deserialized to reconstruct the data structure into memory.

For historical and practical reasons, it requiresila¢a;: Dumper package, @ilable at ag CPAN site.
Data::Dumper gives you really nice-looking dumps of your data structures, in case you wish to look at
them on the screen, and iagvthe only serializing engine before version 2.H80wever, as of version

2.00, you can use wnof Data::Dumper, FreezeThaw or Storable to perform the underlying
serialization, as hinted at by tl&YNOPSISoverview above. Using Storable is usually much dster

than the other methods.

See theBUGS section for important limitations.

Changing the Defaults
MLDBM relies on an underlyingflIEHASH implementation (usually @©BM package), and an
underlying serialization package. The respectifaults areSDBM _File and Data::Dumper. Both
of these defaults can be change&thanging theSDBM _File default is strongly recommendedee
WARNINGS below.

Three serialization wrappers are currently supporfzata::Dumper, Storable, and FreezeThaw.
Additional serializers can be supported by writing a wrapper that implements the interface required by
MLDBM::Serializer. See the supported wrappers andtheDBM ::Serializer source for details.

In the following,$O0BJ stands for the tied object, as in:

$obj = tie %o,
$obj = tied %o0;

$MLDBM::UseDB or $0OBJ—>UseDB(TIEDOBJECT])
The global$MLDBM::UseDB can be set to default to something other tBBBM_File , in case
you hae a nore eficient DBM, or if you want to use this with some oth&EHASH
implementation. Alternately, you can specify the name of the packagesat time, as the first
“ parametet! Nestedmodule names can be specified as “Foo::Bar”.

The corresponding method call returns the underlyit§HASH object when called without
arguments. ltcan be called with anobject that implements PeITIEHASH interface, to set that
vaue.

$MLDBM::Serializer or $0OBJ —>Serializer[SZROBJECT])
The global$MLDBM::Serializer can be set to the name of the serializing package to be used.
Currently can be set to one Bfata::Dumper , Storable , or FreezeThaw . Defaults to
Data::Dumper . Alternatively, you can specify the name of the serializer packagsettime,
as the second “parameter”.

The corresponding method call returns the underlywndBM serializer object when called
without aguments. Itcan be called with an object that implements kheDBM serializer
interface, to set that value.

Controlling Serializer Properties
These methods are meant to supply an interface to the properties of the underlying serialidz2o used.
not call or set them without understanding the consequences in full. The defaults are usually sensible.

(=] [m]
-
S perivs.20.2 2015-06-09 1

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

Not all of these necessarily apply to all the supplied serializers, so we specify when to apply them.
Fallure to respect this will usually lead to an exception.

$MLDBM::DumpMeth or $0BJ->DumpMeth[METHNAME])
If the serializer provides alternadi ®rialization methods, this can be used to set them.

With Data::Dumper (which offers a pure Perl and &1$ verion of its serializing routine), this is
set toDumpxs by default if that is supported in your installatio®@therwise, defaults to the
slowerDumpmethod.

With Storable, a value ofportable requests that serialization be architecture neutral, i.e. the
deserialization can later occur on another platform. Of course, this only makes sense if your
database files are themselves architecture neusaldefault, natre format is used for greater
serializing speed irStorable. Both Data::Dumper and FreezeThaw are alvays architecture
neutral.

FreezeThaw does not honor this attribute.

$MLDBM::Key or $0BJ—>Key([KEYSTRING])
If the serializer only deals with part of the data (perhaps becausetieSH object can natiely
store some types of data), it may need a unigyesking to recognize the data it handleghis
can be used to set that string. Best left alone.

Defaults to the magic string used to recogni#eDBM data. It is a six character wide, unique
string. This is best left alone, unless youwnehat you are doing.

Storable andFreezeThaw do not honor this attribute.

$MLDBM::RemoveTaint or $OBJ->RemweTaint([BOOL])
If the serializer can optionally untaintyaretrieved data subject to taint checks in Perl, this can be
used to request that feature. Data that comes from external soureedsiifiles) must alays
be viewed with caution, so use this only when you are sure that that is not an issue.

Data::Dumper useseval() to deserialize and is therefore subject to taint cheCles be set to
a true value to mak the Data::Dumper serializer untaint the data retr@l. It is not enabled by
default. Usewith care.

Storable andFreezeThaw do not honor this attribute.

EXAMPLES
Here is a simplexample. Notehat does not depend upon the underlying serializing paekagest
real life examples should not, usually.

use MLDBM; # t his gets SDBM and Data::Dumper
#use MLDBM qw(SDBM _File Storable); # SDBM and Storable
use Fentl; # to g et'em constants

$dbm = tie %0, 'MLDBM', 'testmldbm’, O_CREAT|O_RDWR, 0640 or die $!;

$c=[\"'cY;
$b={}

$a =[1, $b, $cJ;
$b->{a} = $a;

$b—>{b} = $a—>[1];
$b—>{c} = $a—>[2];
@o{gw(a b c)} = ($a, $b, $c);

#

to s ee what was stored

#

use Data::Dumper,

print Data::Dumper—>Dump([@o{gw(a b c)}], [qw(a b c)]);

#
to modify data in a substructure

(=] [m]
-
ST perivs.20.2 2015-06-09 2

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

O

e
EH perl v5.20.2

=]

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)
#
$tmp = $o{a};
$tmp—>[0] = 'foo’;
$o{a} = $tmp;
#
can access the underlying DBM methods transparently
#
#print $dbm->fd, "\n"; # DB_File method

Here is another small example using Storable, in a portable format:

BUGS

use MLDBM gqw(DB_File Storable); # DB_File and Storable
tie %0, 'MLDBM', 'testmldbm’, O_CREAT|O_RDWR, 0640 or die $!;

(tied %0)—>DumpMeth('portable’); # Ask for portable binary
$o{'ENV'} = \%ENYV; # Stores the whole environment

Adding or altering substructures to a hash value is not entirely transparent in currefft yamrl.
want to store a reference or modify an existing reference value iDBM it must first be
retrieved and stored in a temporary variable for further modifications. In particsdanething
like this will NOT work properly:

$midb{key}{subkey}[3] = 'stuff’; # won't work
Instead, that must be written as:

$tmp = Smlidb{key}; # r etrieve value
$tmp—>{subkey}[3] = 'stuff’;
$midb{key} = $tmp; # store value

This limitation exists because the peFIEHASH interface currently has no support for
multidimensional ties.

TheData::Dumper serializer usesval(). A lot. Try the Storable serializer which is generally
the most efficient.

WARNINGS

1.

10|

Many DBM implementations he abitrary limits on the size of records that can be storeat.
example,SDBM and mag ODBM or NDBM implementations he a afault limit of 1024 bytes

for the size of a recordVLDBM can easily exceed these limits when storing large data structures,
leading to mysteriousaflures. AlthoughSDBM_File is used byiLDBM by default, it is not a
good choice if you're storing large data structurBgrkeley DB and GDBM both do not hee
these limits, so | recommend using either of those instead.

MLDBM does well with data structures that are not too deep and not too Yadedso need to be
careful about he many FETCHes your code actually ends up doing. Meaning, you should get the
most mileage out of RETCHby holding on to the highestvd value for as long as you need it.
Remember thatvery toplevel access of the tied hash, foxanple$midb{foo} , translates to a
MLDBM FETCHY() call.

Too often, people end up writing somethingditis:

tie %h, '"MLDBM', ...;
for my $k (keys %{$h{something}}) {

print $h{something{$k}[O{fooHbar}; # FETCH _every_time!
}

when it should be written this for efficiency:

2015-06-09 3

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

tie %h, '"MLDBM', ...;
my $root = $h{something}; # FETCH _once_
for my $k (keys %$root) {
print $k->[0]{foo}{bar}
}

AUTHORS
Gurusamy Sarath<gsar AT umich DOT edu>.

Support for multiple serializing packages by Raphael ManfrBdpkael Manfredi AT grenoble DOT
hp DOT com>.

Test suite fixes for perl 5.8.0 done by Josh Chamas.

Copyright (c) 1995-98 Gurusamy SaratiAll rights reserved.

Copyright (c) 1998 Raphael Manfredi.

Copyright (c) 2002 Josh Chamas, Chamas Enterprises Inc.

Copyright (c) 2010-2013 Alexandr Ciornii (alexchpil gmail DOT com).

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

VERSION
\ersion 2.05

SEE ALSO
perl (1), perltie(1), perlfunc(l), Data::Dumper FreezeThe, Sorable, DBM::Deep,
MLDBM::Serializer::JSON.

(=] [m]
-
S perivs.20.2 2015-06-09 4

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

