
MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

NAME
MLDBM − store multi−level Perl hash structure in single level tied hash

SYNOPSIS
use MLDBM; # t his gets the default, SDBM
#use MLDBM qw(DB_File FreezeThaw); # use FreezeThaw for serializing
#use MLDBM qw(DB_File Storable); # use Storable for serializing

$dbm = tie %o, 'MLDBM' [..other DBM args..] or die $!;

DESCRIPTION
This module can serve as a transparent interface to any TIEHASH package that is required to store
arbitrary perl data, including nested references.Thus, this module can be used for storing references
and other arbitrary data withinDBM databases.

It works by serializing the references in the hash into a single string. In the underlyingTIEHASH
package (usually aDBM database), it is this string that gets stored. When the value is fetched again, the
string is deserialized to reconstruct the data structure into memory.

For historical and practical reasons, it requires theData::Dumper package, available at any CPAN site.
Data::Dumper gives you really nice-looking dumps of your data structures, in case you wish to look at
them on the screen, and it was the only serializing engine before version 2.00.However, as of version
2.00, you can use any of Data::Dumper, FreezeThaw or Storable to perform the underlying
serialization, as hinted at by theSYNOPSISoverview above. Using Storable is usually much faster
than the other methods.

See theBUGSsection for important limitations.

Changing the Defaults
MLDBM relies on an underlyingTIEHASH implementation (usually aDBM package), and an
underlying serialization package. The respective defaults areSDBM_File andData::Dumper. Both
of these defaults can be changed.Changing theSDBM_File default is strongly recommended.See
WARNINGSbelow.

Three serialization wrappers are currently supported:Data::Dumper, Storable, and FreezeThaw.
Additional serializers can be supported by writing a wrapper that implements the interface required by
MLDBM::Serializer. See the supported wrappers and theMLDBM::Serializer source for details.

In the following,$OBJ stands for the tied object, as in:

$obj = tie %o,
$obj = tied %o;

$MLDBM::UseDB or $OBJ−>UseDB([TIEDOBJECT])
The global$MLDBM::UseDB can be set to default to something other thanSDBM_File , in case
you have a more efficient DBM, or if you want to use this with some otherTIEHASH
implementation. Alternatively, you can specify the name of the package atuse time, as the first
‘‘ parameter’’. Nestedmodule names can be specified as ‘‘Foo::Bar’’.

The corresponding method call returns the underlyingTIEHASH object when called without
arguments. Itcan be called with any object that implements Perl’s TIEHASH interface, to set that
value.

$MLDBM::Serializer or $OBJ−>Serializer([SZROBJECT])
The global$MLDBM::Serializer can be set to the name of the serializing package to be used.
Currently can be set to one ofData::Dumper , Storable , or FreezeThaw . Defaults to
Data::Dumper . Alternatively, you can specify the name of the serializer package atuse time,
as the second ‘‘parameter’’.

The corresponding method call returns the underlyingMLDBM serializer object when called
without arguments. Itcan be called with an object that implements theMLDBM serializer
interface, to set that value.

Controlling Serializer Properties
These methods are meant to supply an interface to the properties of the underlying serializer used.Do
not call or set them without understanding the consequences in full. The defaults are usually sensible.

perl v5.20.2 2015-06-09 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

Not all of these necessarily apply to all the supplied serializers, so we specify when to apply them.
Failure to respect this will usually lead to an exception.

$MLDBM::DumpMeth or $OBJ−>DumpMeth([METHNAME])
If the serializer provides alternative serialization methods, this can be used to set them.

With Data::Dumper (which offers a pure Perl and anXS verion of its serializing routine), this is
set toDumpxs by default if that is supported in your installation.Otherwise, defaults to the
slowerDumpmethod.

With Storable, a value ofportable requests that serialization be architecture neutral, i.e. the
deserialization can later occur on another platform. Of course, this only makes sense if your
database files are themselves architecture neutral.By default, native format is used for greater
serializing speed inStorable. Both Data::Dumper and FreezeThaw are always architecture
neutral.

FreezeThaw does not honor this attribute.

$MLDBM::Key or $OBJ−>Key([KEYSTRING])
If the serializer only deals with part of the data (perhaps because theTIEHASH object can natively
store some types of data), it may need a unique key string to recognize the data it handles.This
can be used to set that string. Best left alone.

Defaults to the magic string used to recognizeMLDBM data. It is a six character wide, unique
string. This is best left alone, unless you know what you are doing.

Storable andFreezeThaw do not honor this attribute.

$MLDBM::RemoveTaint or $OBJ−>RemoveTaint([BOOL])
If the serializer can optionally untaint any retrieved data subject to taint checks in Perl, this can be
used to request that feature. Data that comes from external sources (like disk-files) must always
be viewed with caution, so use this only when you are sure that that is not an issue.

Data::Dumper useseval() to deserialize and is therefore subject to taint checks.Can be set to
a true value to make the Data::Dumper serializer untaint the data retrieved. It is not enabled by
default. Usewith care.

Storable andFreezeThaw do not honor this attribute.

EXAMPLES
Here is a simple example. Notethat does not depend upon the underlying serializing package— most
real life examples should not, usually.

use MLDBM; # t his gets SDBM and Data::Dumper
#use MLDBM qw(SDBM_File Storable); # SDBM and Storable
use Fcntl; # to g et 'em constants

$dbm = tie %o, 'MLDBM', 'testmldbm', O_CREAT|O_RDWR, 0640 or die $!;

$c = [\ 'c'];
$b = {};
$a = [1, $b, $c];
$b−>{a} = $a;
$b−>{b} = $a−>[1];
$b−>{c} = $a−>[2];
@o{qw(a b c)} = ($a, $b, $c);

#
to s ee what was stored
#
use Data::Dumper;
print Data::Dumper−>Dump([@o{qw(a b c)}], [qw(a b c)]);

#
to m odify data in a substructure

perl v5.20.2 2015-06-09 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

#
$tmp = $o{a};
$tmp−>[0] = 'foo';
$o{a} = $tmp;

#
c an access the underlying DBM methods transparently
#
#print $dbm−>fd, "\n"; # DB_File method

Here is another small example using Storable, in a portable format:

use MLDBM qw(DB_File Storable); # DB_File and Storable

tie %o, 'MLDBM', 'testmldbm', O_CREAT|O_RDWR, 0640 or die $!;

(tied %o)−>DumpMeth('portable'); # Ask for portable binary
$o{'ENV'} = \%ENV; # Stores the whole environment

BUGS
1. Adding or altering substructures to a hash value is not entirely transparent in current perl.If you

want to store a reference or modify an existing reference value in theDBM, it must first be
retrieved and stored in a temporary variable for further modifications. In particular, something
like this will NOT work properly:

$mldb{key}{subkey}[3] = 'stuff'; # won't work

Instead, that must be written as:

$tmp = $mldb{key}; # r etrieve value
$tmp−>{subkey}[3] = 'stuff';
$mldb{key} = $tmp; # s tore value

This limitation exists because the perlTIEHASH interface currently has no support for
multidimensional ties.

2. TheData::Dumper serializer useseval(). A lot. Try the Storable serializer, which is generally
the most efficient.

WARNINGS
1. Many DBM implementations have arbitrary limits on the size of records that can be stored.For

example,SDBM and many ODBM or NDBM implementations have a default limit of 1024 bytes
for the size of a record.MLDBM can easily exceed these limits when storing large data structures,
leading to mysterious failures. AlthoughSDBM_File is used byMLDBM by default, it is not a
good choice if you’re storing large data structures.BerkeleyDB and GDBM both do not have
these limits, so I recommend using either of those instead.

2. MLDBM does well with data structures that are not too deep and not too wide.You also need to be
careful about how manyFETCHes your code actually ends up doing. Meaning, you should get the
most mileage out of aFETCHby holding on to the highest level value for as long as you need it.
Remember that every toplevel access of the tied hash, for example$mldb{foo} , translates to a
MLDBM FETCH() call.

Too often, people end up writing something like this:

tie %h, 'MLDBM', ...;
for my $k (keys %{$h{something}}) {

print $h{something}{$k}[0]{foo}{bar}; # FETCH _every_ time!
}

when it should be written this for efficiency:

perl v5.20.2 2015-06-09 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

MLDBM(3pm) UserContributed Perl Documentation MLDBM(3pm)

tie %h, 'MLDBM', ...;
my $root = $h{something}; # FETCH _once_
for my $k (keys %$root) {

print $k−>[0]{foo}{bar};
}

AUTHORS
Gurusamy Sarathy <gsar AT umich DOT edu>.

Support for multiple serializing packages by Raphael Manfredi <Raphael_Manfredi AT grenoble DOT
hp DOT com>.

Test suite fixes for perl 5.8.0 done by Josh Chamas.

Copyright (c) 1995−98 Gurusamy Sarathy. All rights reserved.

Copyright (c) 1998 Raphael Manfredi.

Copyright (c) 2002 Josh Chamas, Chamas Enterprises Inc.

Copyright (c) 2010−2013 Alexandr Ciornii (alexchorny AT gmail DOT com).

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

VERSION
Version 2.05

SEE ALSO
perl (1), perltie (1), perlfunc (1), Data::Dumper, FreezeThaw, Storable, DBM::Deep,
MLDBM::Serializer::JSON.

perl v5.20.2 2015-06-09 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+MLDBM

