
Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

NAME
Modem::Vgetty − interface to vgetty(8)

SYNOPSIS
use Modem::Vgetty;
$v = new Modem::Vgetty;

$string = $v−>receive;
$v−>send($string);
$string = $v−>expect($str1, $str2, ...);
$v−>waitfor($string);
$rv = $v−>chat($expect1, $send1, $expect2, $send2, ...);

$ttyname = $v−>getty;
$rv = $v−>device($dev_type);
$rv = $v−>autostop($bool);
$rv = $v−>modem_type; # !!! see the docs below.

$rv = $v−>beep($freq, $len);
$rv = $v−>dial($number);
$rv = $v−>play($filename);
$rv = $v−>record($filename);
$rv = $v−>wait($seconds);
$rv = $v−>play_and_wait($filename);
$v−>stop;

$v−>add_handler($event, $handler_name, $handler);
$v−>del_handler($event, $handler_name);
$v−>enable_events;
$v−>disable_events;

$number = $v−>readnum($message, $tmout, $repeat);

$v−>shutdown;

DESCRIPTION
Modem::Vgetty is an encapsulation object for writing applications for voice modems using the
vgetty (8) or vm (8) package. The answering machines and sofisticated voice applications can be written
using this module.

OVERVIEW
Voice modem is a special kind of modem, which (besides the normal data and/or fax mode) can
communicate also in voice mode. It means it can record sounds it hears from the phone line to the file,
Play-back recorded files, it can beep to the line, and it can detect various standard sounds coming from
the line (busy tone, silence, dual tone modulation frequency (DTMF) keypad tones, etc).An example of
the voice modem can be the ZyXEL U1496,US Robotics Sportster (not Courier), etc.

To use this software with the voice modem you need to have thevgetty (8) package installed.Vgetty is
distributed as a part ofmgetty package. In fact,vgetty is amgetty (8) with the voice extensions. Vgetty
has some support for scripting − when it receives an incoming call, it runs a voice shell (it is program
specified in thevoice.conffile) as its child process, establishes the read and write pipes to it, and tells it
the number of the appropriate descriptors in the environment variables. Voice shell can now
communicate withvgetty. It can tellvgetty ‘‘ Play this file’’, or ‘‘Record anything you hear to that file’’,
or ‘‘Notify me when user hangs up’’, etc. Sophisticated voice systems and answering machines can be
build on top ofvgetty.

mgetty (including thevgetty) is available at the followingURL:

ftp://alpha.greenie.net/pub/mgetty/

Originally there was a (Bourne) shell interface tovgetty only. The Modem::Vgetty module allows
user to write the voice shell in Perl. The typical use is to write a script and point thevgetty to it (in
voice.conf file). The script will be run when somebody calls in. Another use is running voice shell

perl v5.14.2 1998-09-08 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

from thevm (8) program, which can for example dial somewhere and say something.

QUICK START
#!/usr/bin/perl
use Modem::Vgetty;
my $v = new Modem::Vgetty;
$v−>add_handler('BUSY_TONE', 'endh', sub { $v−>stop; exit(0); });
local $SIG{ALRM} = sub { $v−>stop; };
$v−>enable_events;
$v−>record('/tmp/hello.rmd');
alarm(20);
$v−>waitfor('READY');
$v−>shutdown;

The above example installs the simple ‘exit now’-style handler for theBUSY_TONE ev ent (which is
sent byvgetty when user hangs up) and then records thehello.rmd file. Put this text into a file and then
point vgetty to it in thevoice.conf. After you dial into your voice modem, you can record a 20−seconds
of some message.Verify that /tmp/hello.rmd exists. Now delete the line contaning the word ‘‘record’’
and two subsequent lines and insert to the file the following line instead of them:

$v−>play_and_wait('/tmp/hello.rmd');

Now call the voice modem and listen to the sounds you have just recorded.

METHODS
Begin and end of communication

TheModem::Vgetty object will initialize the communication pipes to thevgetty at the creation time −
in the constructor. The closing of the communication is done via theshutdownmethod:

$v−>shutdown;

The module will call this method itself from the destructor, if you do not call it explicitly.

Low-level communication
Users probably don’t want to use these methods directly. Use the higher-level functions instead.

receive
This method returns a string received from thevgetty. It parses the string for the event types and
runs appropriate event handlers. If event handler is run it waits for another string.

send($string)
This method sends the string$string to thevgetty process.

expect($string1,$string2 , ...)
Receives a string from vgetty (using thereceive method described above) and returns it iff it i s
equal to one of the strings in the argument list. When something different is received, this method
returnsundef.

waitfor($string)
Waits until the string$sring is received from vgetty (using thereceive method described
above). =itemchat($expect1,$sent1 , $expect2 , $sent2 , ...)

A chat-script withvgetty. Arguments are interpreted as the received-sent string pairs. A received
string equals to the empty string means that noreceive method will be called at that place. This
can be used for constructing chat scripts beginning with the sent string instead of the received one.

Vgetty control methods
There are miscellaneous methods for controlligvgetty and querying its status.

getty
Returns the name of the modem special file (e.g./dev/ttyC4).

device($name)
Sets the port of the voice modem input and output is done to.Possible values are qw(NO_DEVICE
DIALUP_LINE EXTERNAL_MICROPHONE INTERNAL_SPEAKER LOCAL_HANDSET).

autostop($bool)
With autostop on, the voicelib will automatically abort a play in progress and returnREADY. This
is useful for faster reaction times for voice menus. Possible arguments are qw(ON OFF). Note:

perl v5.14.2 1998-09-08 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

The interface should probably be changed to accept the Perl boolean arguments (undef, something
else). Returns defined value on success, undef on failure.

modem_type
vgetty currently has no way of telling voice shell the type of the current modem. This method is a
proposed interface for determining this type. Currently returnsundef. The appropriate low-level
interface has to be implemented invgetty first.

Voice commands
beep($freq,$len)

Sends a beep through the chosen device using given frequency (HZ) and length (in miliseconds).
Returns a defined value on success or undef on failure. Thestate of the vgetty changes to
‘‘ BEEPING’’ andvgetty returns ‘‘READY’’ after a beep is finshed. Example:

$v−>beep(50,10);
Possibly do something else
$v−>waitfor('READY');

dial($number)
Modem tries to dial a given number. The vgetty changes its state to ‘‘DIALING ’’ and returns
‘‘ READY’’ after the dialing is finished.

play($filename)
The vgetty tries to play the given file as a raw modem data. See the ‘‘Voice data’’ section for
details on creating the raw modem data file. It changes the state to ‘‘PLAYING’’ and returns
‘‘ READY’’ after playing the whole file.

record($filename)
Thevgetty records the voice it can hear on the line to the given file. It uses the raw modem data
format (which can be re-played using theplay subroutine). vgetty changes its state to
‘‘ RECORDING’’ and you need to manually stop the recording using thestop method after some
time (or, you can setautostopand wait for any event − silence, busy tone, etc).

wait($seconds)
The modem waits for a given number of seconds. Changes its state to ‘‘WAITING’’ and returns
‘‘ READY’’ after the wait is finished. Example:

$v−>wait(5);
$v−>waitfor('READY');

stop
The vgetty stops anything it is currently doing and returns to the command state. You must use
stop when you want to call anotherbeep, dial, play, record or wait before the previous one is
finished. Thevgetty returns ‘‘READY’’ after thestop is called. So it is possible to interrupt a main
routine waiting for ‘‘READY’’ f rom the event handler:

my $dtmf;
$v−>add_handler('RECEIVED_DTMF', 'readnum',

sub { my $self=shift; $self−>stop; $dtmf = $_[2]; });
$v−>enable_events;
$v−>wait(10);
$v−>waitfor('READY');

In the previous example thewaitfor method can be finished either by the 10−second timeout
expired, or by the ’READY’ generated by thestop in the event handler. See also theEvents
section.

play_and_wait($file)
It is an abbreviation for the following:

$v−>play($file);
$v−>waitfor('READY');

It is repeated so much time in the voice applications so I have decided to make a special routine
for it. I may add the similar routines fordial, record, beepand even wait in the future releases.

perl v5.14.2 1998-09-08 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

Event handler methods
add_handler($event, $handler_name , $handler)

Installs a call-back routine$handler for the event type $event . The call-back routine is
called with three arguments. The first one is the Modem::Vgetty object itself, the second one is the
ev ent name and the third one is optional event argument. The$handler_name argument can
be anything. It is used when you want to delete this handler for identificating it.

del_handler($event, $handler_name)
This method deletes the handler$handler_name for the $event ev ent. The result of
unregistering the handler from the event handler of the same event is unspecified. It may or may
not be called.

enable_events
Tells the vgetty that the voice shell is willing to dispatch events. Noev ents are sent byvgetty
until this method is called.

disable_events
Tells thevgetty that the voice shell doesn’t want to receive any events anymore.

The readnum method
readnum($message,$tmout , $repeat)

The applications often need to read the multi-digit number via theDTMF tones. Thisroutine plays
the$message to the voice object and then waits for the sequence of theDTMF keys finished by
the ‘#’ key. If no key is pressed for$tmout of seconds, it re-plays the message again. It returns
failure if no key is pressed after the message is played$repeat−th time. It returns a string (a
sequence ofDTMF tones 0−9,A−D and ‘*’) without the final ‘#’. When someDTMF tones are
received and no terminating ‘#’ or other tone is received for $tmout seconds, the routine returns
the string it currently has without waiting for the final ’#’.DTMF tones are accepted even at the
time the$message is played. When theDTMF tone is received, the playing of the$message is
(with some latency, of course) stopped.

NOTE: The interface of this routine can be changed in future releases, because I am not (yet)
decided whether the current interface is the best one. See also theEXAMPLES section where the
source code of this routine (and its co-routine) is discussed.

EVENTS
Introduction

Events are asynchronous messages sent byvgetty to the voice shell.The Modem::Vgetty module
dispatches events itself in thereceive method. User can register any number of handlers for each event.
When an event arrives, all handlers for that event are called (in no specified order).

Event types
At this time, theModem::Vgetty module recognizes the following event types (description is mostly
re-typed from thevgetty documentation):

BONG_TONE
The modem detected a bong tone on the line.

BUSY_TONE
The modem detected busy tone on the line (when dialing to the busy number or when caller
finished the call).

CALL_WAITING
Defined inIS−101(I think it is when the line receives another call-in when some call is already in
progress. −Yenya).

DIAL_TONE
The modem detected dial tone on the line.

DATA_CALLING_TONE
The modem detected data calling tone on the line.

DATA_OR_FAX_DETECTED
The modem detected data or fax calling tones on the line.

perl v5.14.2 1998-09-08 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

FAX_CALLING_TONE
The modem detected fax calling tone on the line.

HANDSET_ON_HOOK
Locally connected handset went on hook.

HANDSET_OFF_HOOK
Locally connected handset went off hook.

LOOP_BREAK
Defined inIS−101.

LOOP_POLARITY_CHANGE
Defined inIS−101.

NO_ANSWER
After dialing the modem didn’t detect answer for the time give in dial_timeout in voice.conf.

NO_DIAL_TONE
The modem didn’t detect dial tone (make sure your modem is connected properly to your
telephone company’s line, or check theATX command if dial tone in your system differs from the
standard).

NO_VOICE_ENERGY
It means that the modem detected voice energy at the beginning of the session, but after that there
was a period of some time of silence (the actual time can be set using therec_silence_lenand
rec_silence_tresholdparameters invoice.conf).

RING_DETECTED
The modem detected an incoming ring.

RINGBACK_DETECTED
The modem detected a ringback condition on the line.

RECEIVE_DTMF
The modem detected a dtmf code. The actual code value (one of 0−9, *, #, A−D) is given to the
ev ent handler as the third argument.

SILENCE_DETECTED
The modem detected that there was no voice energy at the beginning of the session and after some
time of silence (the actual time can be set using therec_silence_lenand rec_silence_treshold
parameters invoice.conf).

SIT_TONE
Defined inIS−101.

TDD_DETECTED
Defined inIS−101.

VOICE_DETECTED
The modem detected a voice signal on the line.IS−101does not define, how the modem makes this
decision, so be careful.

UNKNOWN_EVENT
None of the above :)

VOICE DAT A
Voice shell can send the voice data to the modem using theplay method and record them using the
record method. The ‘‘.rmd’’ extension (Raw Modem Data) is usually used for these files. The ‘‘.rmd’’
is not a single format − every modem has its own format (sampling frequency, data bit depth, etc).
There is apvftools package for converting the sound files (it is a set of filters similar to thenetpbm for
image files). Thepvftormd (1) filter can be used to create theRMD files for all known types of modems.

EXAMPLES
Answering machine

A simple answering machine can look like this:

perl v5.14.2 1998-09-08 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

#!/usr/bin/perl
use Modem::Vgetty;
my $voicemaster = 'root@localhost';
my $tmout = 30;
my $finish = 0;
my $v = new Modem::Vgetty;
$v−>add_handler('BUSY_TONE', 'finish',

sub { $v−>stop; $finish=1; });
$v−>add_handler('SILENCE_DETECTED', 'finish',

sub { $v−>stop; $finish=1; });
local $SIG{ALRM} = sub { $v−>stop; };
$v−>enable_events;
$v−>play_and_wait('/path/welcome.rmd');
$v−>beep(100,10);
$v−>waitfor('READY');
if ($finish == 0) {

my $num = 0;
$num++ while(−r "/path/$num.rmd");
$v−>record("/path/$num.rmd");
alarm $tmout;
$v−>waitfor('READY');

}
system "echo 'Play with rmdtopvf /path/$num.rmd|pvftoau >/dev/audio'" .

" | m ail −s 'New voice message' $voicemaster";
exit 0;

See the examples/answering_machine.plin the source distribution, which contains a more
configurable version of the above text. It first sets the event handlers for the case of busy tone (the
caller hangs up) or silence (the caller doesn’t speak at all). The handler stopsvgetty from anything it is
currently doing and sets the$finish variable to 1. Then the reception of the events is enabled and the
welcome message is played. Then the answering machine beeps and starts to record the message. Note
that we need to check the$finish variable before we start recording to determine if user hanged up
the phone. Now we find the first filename <number>.rmd such that this file does not exist and we start
to record the message to this file. We record until user hangs up the phone or until the timeout occurs.

Readnum routine
An interesting application of the low-level routines is theVoice::Modem::readnum method. The
calling sequence of this method has been discussed above. The source code for this routine and its co-
routine will be discussed here, so that you can write your own variants ofreadnum (which in fact does
not have too general interface). See also the source code ofVgetty.pm for thereadnum source.

The readnum routine needs to have its own event handler for theRECEIVED_DTMF ev ent and the
way the handler can communicate with this routine. In our solution we use ‘‘static’’ variables:

my $_readnum_number = '';
my $_readnum_timeout = 10;
my $_readnum_in_timeout = 1;

The event handler will add the new character to the end of the$_readnum_number variable. The
$_readnum_timeout is the number of seconds bothreadnum and the event handler should wait
for the next keypress, and the$_readnum_in_timeout is a flag used by the event handler for
notifying the mainreadnum routine that it forced thevgetty to emit the ‘READY’ message because of
the final ‘#’ has been received.

sub _readnum_event {
my $self = shift;
my $input = shift; # Unused. Should be 'RECEIVED_DTMF'.
my $dtmf = shift;

if ($dtmf eq '#') { # Stop the reading now.
$_readnum_in_timeout = 0;
$self−>stop;

perl v5.14.2 1998-09-08 6

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

$self−>{LOG}−>print("_readnum_event(): Got #; stopping\n");
return;

}
$_readnum_number .= $dtmf;
$self−>stop;
$self−>expect('READY');
Restart the wait again.
$_readnum_in_timeout = 1;
$self−>wait($_readnum_timeout);

}

The event handler is installed for the ‘RECEIVED_DTMF’ event only, so it doesn’t need to check for the
$input value. The actualDTMF key is in the third parameter, $dtmf. Note that the handler will be
called whenvgetty is PLAYING or WAITING and thereadnum routine will be waiting for the ‘READY’
message. This allows us to immediately interrupt waiting by the$self−stop> (which emits the
‘READY’ message). Sowhen the ‘#’DTMF tone is received, we send astop to vgetty. If something
else is received, westop thevgetty too but we enter a new wait using$self−wait>.

sub readnum {
my $self = shift;
my $message = shift;
my $timeout = shift;
my $times = shift;
$_readnum_number = '';
$_readnum_in_timeout = 1;
$_readnum_timeout = $timeout if $timeout != 0;
$times = 3 if $times == 0;

I nstall the handler.
$self−>add_handler('RECEIVED_DTMF', 'readnum', \&_readnum_event);
while($_readnum_in_timeout != 0 && $_readnum_number eq ''

&& $times−− > 0) {
$self−>play_and_wait($message);
last if $_readnum_in_timeout == 0;
while ($_readnum_in_timeout != 0) {

$self−>wait($_readnum_timeout);
$self−>expect('READY');

}
}
return undef if $times < 0;
$self−>del_handler('RECEIVED_DTMF', 'readnum');
$self−>stop;
$self−>expect('READY');
$_readnum_number;

}

The readnum routine just sets up the event handler, then plays the$message and waits for the input
(possibly several times). The main work is done in the event handler. At the end the handler is
unregistered and the final value is returned.

Callme script
In theexamplessubdirectory of the source distribution there is acallme.pl script. This dials the given
number and plays the given message. Use the following command to run it:

vm shell −S /usr/bin/perl callme.pl <number> <message>.rmd

BUGS
There may be some, but it will more likely be in thevgetty itself. On the other hand, there can be
typos in this manual (English is not my native language) or some parts of the interface that should be
redesigned. Feel free to mail any comments on this module to me.

perl v5.14.2 1998-09-08 7

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

Vgetty(3pm) UserContributed Perl Documentation Vgetty(3pm)

TODO
Modem type recognition

Thevgetty should be able to tell the voice shell the name of the current modem type.

The_wait() routines
I need to implement the routines similar toplay_and_wait for othervgetty states as well.

Debugging information
The module has currently some support for writing a debug logs (use the
$Modem::Vgetty::testing = 1 and watch the /var/log/voicelog file). This needs to be re-
done using (I think) Sys::Syslog.I need to implement some kind of log-levels, etc.

Mgetty/Vgetty 1.1.17
Need to figure out what is new in 1.1.17 (I use 1.1.14 now). I think new vgetty can play more than
one file in the single ‘PLAY’ command, it (I think) have some support for sending voice data
from/to the voice shell via the pipe, etc.

AUTHOR
TheModem::Vgetty package was written by Jan ‘‘Yenya’’ K asprzak <kas AT fi DOT muni DOT cz>.
Feel free to mail me any suggestions etc.on this module. Module itself is available fromCPAN, but be
sure to check the following address, where the development versions can be found:

http://www.fi.muni.cz/˜kas/vgetty/

COPYRIGHT
Copyright (c) 1998 Jan ‘‘Yenya’’ K asprzak <kas AT fi DOT muni DOT cz>. All rights reserved. This
package is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

perl v5.14.2 1998-09-08 8

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Modem::Vgetty

