o

Ol%

=]

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

Module::Build::WthXSpp(3pm) UseContributed Perl Documentation Module::Build::WithXSpp(3pm)

NAME

Module::Build::WithXSpp — XS++ enhanced\taur of Module::Build

SYNOPSIS

In Build.PL

use strict;
use warnings;
use 5.006001;

use Module::Build::WithXSpp;

my $build = Module::Build::WithXSpp—>new(
normal Module::Build arguments...
optional: mix in some extra C typemaps:
extra_typemap_modules => {
'ExtUtils:: Typemaps::ObjectMap' => '0',
2
);

$build—>create_build_script;

DESCRIPTION

This subclass of Module::Build adds some tools and processes ¢atreagier to use for wrapping-€
usingXS++ (ExtUtils::XSpp).

There are a fg minor differences from usiniylodule::Build for an ordinaryxs module and a fe
conventions that you should beware of as anXS++ module authorThey are documented in the
“ FEATURES AND CONVENTIONS' section belw. But if you cant be lothered to read all that, you
may choose skip it and blindly follothe advice in JUMP STAR FOR THE IMRATIENT” .

An example of a full distribution based on thigild tool can be found in the ExtULtils::XSpp
distribution under examples/XSpp—Example Using that &le as the basis for your

Module::Build::WithXSpp —based distribution is probably a good idea.
FEATURES AND CONVENTIONS
Xs files
By default, Module::Build::WithXSpp will automatically generate a maixs file for your

module which includes alS++files and does the correct incantations to suppert C

If Module::Build::WithXSpp detects ap XS files in your module, it will skip the generation of
this default file and assume that you wrote a custom R&file. If that is not what you want, and wish
to simply include plairXs code, then you should put ths in a verbatim block of arxspfile. In case
you need to use the plain-C part of>X file for #include directives and other code, then put your
code into a header file a#ithclude it from an.xspfile:

In src/mystuth:

#include <something>
using namespace some::thing;

In xsp/MyClass.xsp
#include "mystuff.h"
9%{

... verbatim XS here ...
%}

Note that there is no guarantee about the order in whickSkefiles are picked up.

Build directory

When building yourxS++ based extension, a temporary build directbatdtmp is created for the
byproducts. lfs automatically cleaned up bjBuild clean

Source directories

A Perl module distribution typically has the modulpm files in its lib subdirectory In a
Module::Build::WithXSpp based distribution, there are dwmore such coventions about

perl v5.22.2 2016-08-27 1

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

Module::Build::WthXSpp(3pm) UseContributed Perl Documentation Module::Build::WithXSpp(3pm)

source directories:

If any C+ source files are present in the directory they will be compiled to object files and liekl
automatically.

Any .xs , .xsp , and .xspt files in anxs or xsp subdirectory will be automatically picked up and
included by the build system.

For backwards compatibilityfiles of the abee types are also recognizedliip.

Typemaps
In XS++,there are tw types of typemaps: The ordinaxg typemaps which camntionally put in a file
calledtypemapand XS++typemaps.

The ordinaryXs typemaps will be found in the main directomderlib, and in thexs directories Xs
and xsp. They are required to carry themap extension or to be calletypemap You may use
multiple .mapfiles if the entries do not collide. Thavill be merged at build time into a complete
typemaffile in the temporary build directory.

The extra_typemap_modules option is the preferred way to &s typemapping. lworks like
ary other Module::Build argument that declares dependencies except that it loads the listed
modules at build time and includes their typemaps into the build.

The XS++ typemaps are required to carry thept extension or (for backwards compatibility) to be
calledtypemap.xsp

Detecting the G+compiler
Module::Build::WithXSpp uses ExtUtils::CppGuess to detect & €@mpiler on your system
that is compatible with the C compiler thatsvused to compile your perl binaly sets some
additional compiler/linker options.

This is knavn to work onGCC (Linux, MacOS, Wihdows, and ?) as well as théS VC toolchain.
Paches to enable other compilers aeey welcome.

Automatic dependencies

Module::Build::WithXSpp automatically adds seral dependencies (on the currently running
versions) to your distribstion. You can disable this by settimyito_configure_requires =>

0 in Build.PL

These are at configure timeéModule::Build , Module::Build::WithXSpp itself, and
ExtUtils::CppGuess . Additionally there will be a build-time dependgncon

ExtUtils::XSpp

You do ot hare b st these dependencies yourself unless you need to set the redrsEmhsy
manually.

Include files
Unfortunately including the perl headers produces quite some pollution and redefinition of common
symbols. Therefore, it may be necessary to include some of your headers before including the perl
headers. Specificallyhis is the case fanSVC compilers and the standard library headers.

Therefore, if you care about that platform in the least, you should usarlyeincludes option
when creating aModule::Build::WithXSpp object to list headers to include before the perl
headers. If such a supplied header file starts with a double dtiotdude "..." is used,
otherwisefinclude <...> is the default. Example:

Module::Build::WithXSpp—>new(
early_includes => [qw(
"mylocalheader.h"
<mysystemheader.h>

)]
)

JUMP START FOR THE IMP ATIENT
There are as mgrways to start a e CPAN distribution as there ar€PAN distributions. Choose your
favourite (I just doh2xs —An My::Module), then apply a f@ changes to your setup:

» Obliterate anyMakefile.PL
OpJIo)

EEd perivs.22.2 2016-08-27 2

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

Module::Build::WthXSpp(3pm) UseContributed Perl Documentation Module::Build::WithXSpp(3pm)

This is what youBuild.PL should look like:

use strict;

use warnings;

use 5.006001;

use Module::Build::WithXSpp;

my $build = Module::Build::WithXSpp—>new(

module_name => 'My::Module’,

license => ‘perl’,

dist_author => g{John Doe <john_does_mail_address>},
dist_version_from => 'lib/My/Module.pm’,

build_requires => { 'Test::More' => 0, },
extra_typemap_modules => {
‘ExtUtils:: Typemaps::ObjectMap' =>'0',
...
}1
)i

$build—>create_build_script;
If you need to link against some librdiyfoo , add this to the options:
extra_linker_flags => [qw(-Ifo0)],
There isextra_compiler_flags , too, if you need it.
* You create two folders in the main distribution foldestc andxsp

* You put ary C+ code that you want touild and include in the module intrc/. All the typical
C(++) file extensions are recognized and will be compiled to object files and linked into the module.
And headers in that folder will be accessible#forclude <myheader.h>
For good measure, nve a o@py of ppport.hto that directory See Deel::PPPort.

» You do not write normalxs files. Instead, you writ&S++ and put it into thexsp/folder in files with
the .xsp extension. Do not wrry, you can include erbatimXs blocks in XS++. For details on
XS++, see ExtULtils::XSpp.

 If you need to do anXxs type mapping, put your typemaps intonaapfile in thexsp directory.
Alternatively, searchCPAN for an appropriate typemap module (&xtUtils::Typemaps::Defult for
an explanation) XS++ typemaps belong intxsptfiles in the same directory.

 In this schemelib/ only contains Perl module files (ambD). If you started from a pure-Perl
distribution, dort forget to add these magicawnes to your main module:

require XSLoader;
XSLoader::load('My::Module', $VERSION);

SEE ALSO
Module::Build upon which this module is based.

ExtUtils::XSpp implementsXS++. The ExtUtils::XSpp distribution contains anexamples
directory with a usage example of this module.

ExtUtils::Typemaps implements progammatic modification ¢fimg) of C/XS typemaps.
ExtUtils:: Typemaps was renamed fromExtUtils::Typemap since the original name
conflicted with the corgypemarfile on case-insensit file systems.

ExtUtils:: Typemaps::Default explains the concept of having typemaps shipped as modules.

ExtUtils:: Typemaps::ObjectMap is such a typemap module and probably very usefulyfaSan
module.

ExtUtils:: Typemaps::STL::String implements simple typemappingfarstd::string S.

AUTHOR
Steffen Mueller <smuellerAcpan DO org>

With input and bug fixes from:

g

I perivs.22.2 2016-08-27 3

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Ubuntu 17.10 (Artful Aardvark) man.m.sourcentral.org

Module::Build::WthXSpp(3pm) UseContributed Perl Documentation Module::Build::WithXSpp(3pm)

Mattia Barbon
Shmuel Fomberg
Florian Schlichting

COPYRIGHT AND LICENSE
Copyright 2010, 2011, 2012, 2013 Steffen Mueller.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

perl v5.22.2 2016-08-27 4

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

