
Module::Build::WithXSpp(3pm) UserContributed Perl Documentation Module::Build::WithXSpp(3pm)

NAME
Module::Build::WithXSpp − XS++ enhanced flavour of Module::Build

SYNOPSIS
In Build.PL:

use strict;
use warnings;
use 5.006001;

use Module::Build::WithXSpp;

my $build = Module::Build::WithXSpp−>new(
normal Module::Build arguments...
optional: mix in some extra C typemaps:
extra_typemap_modules => {

'ExtUtils::Typemaps::ObjectMap' => '0',
},

);
$build−>create_build_script;

DESCRIPTION
This subclass of Module::Build adds some tools and processes to make it easier to use for wrapping C++

usingXS++ (ExtUtils::XSpp).

There are a few minor differences from usingModule::Build for an ordinaryXS module and a few
conventions that you should be aware of as anXS++ module author. They are documented in the
‘‘ FEATURES AND CONVENTIONS’’ section below. But if you can’t be bothered to read all that, you
may choose skip it and blindly follow the advice in ‘‘JUMP START FOR THE IMPATIENT’’ .

An example of a full distribution based on this build tool can be found in the ExtUtils::XSpp
distribution under examples/XSpp−Example. Using that example as the basis for your
Module::Build::WithXSpp −based distribution is probably a good idea.

FEATURES AND CONVENTIONS
XS files

By default, Module::Build::WithXSpp will automatically generate a mainXS file for your
module which includes allXS++ files and does the correct incantations to support C++.

If Module::Build::WithXSpp detects any XS files in your module, it will skip the generation of
this default file and assume that you wrote a custom mainXS file. If that is not what you want, and wish
to simply include plainXS code, then you should put theXS in a verbatim block of an.xspfile. In case
you need to use the plain-C part of anXS file for #include directives and other code, then put your
code into a header file and#include it from an.xspfile:

In src/mystuff.h:

#include <something>
using namespace some::thing;

In xsp/MyClass.xsp

#include "mystuff.h"

%{
... verbatim XS here ...

%}

Note that there is no guarantee about the order in which theXS++ files are picked up.

Build directory
When building yourXS++ based extension, a temporary build directorybuildtmp is created for the
byproducts. Itis automatically cleaned up by./Build clean .

Source directories
A Perl module distribution typically has the module.pm files in its lib subdirectory. In a
Module::Build::WithXSpp based distribution, there are two more such conventions about

perl v5.22.2 2016-08-27 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Module::Build::WithXSpp(3pm) UserContributed Perl Documentation Module::Build::WithXSpp(3pm)

source directories:

If any C++ source files are present in thesrc directory, they will be compiled to object files and linked
automatically.

Any .xs , .xsp , and .xspt files in anxs or xsp subdirectory will be automatically picked up and
included by the build system.

For backwards compatibility, files of the above types are also recognized inlib.

Typemaps
In XS++, there are two types of typemaps: The ordinaryXS typemaps which conventionally put in a file
calledtypemap, and XS++ typemaps.

The ordinaryXS typemaps will be found in the main directory, under lib, and in theXS directories (xs
and xsp). They are required to carry the.map extension or to be calledtypemap. You may use
multiple .map files if the entries do not collide. They will be merged at build time into a complete
typemapfile in the temporary build directory.

The extra_typemap_modules option is the preferred way to doXS typemapping. Itworks like
any other Module::Build argument that declares dependencies except that it loads the listed
modules at build time and includes their typemaps into the build.

The XS++ typemaps are required to carry the.xspt extension or (for backwards compatibility) to be
calledtypemap.xsp .

Detecting the C++ compiler
Module::Build::WithXSpp uses ExtUtils::CppGuess to detect a C++ compiler on your system
that is compatible with the C compiler that was used to compile your perl binary. It sets some
additional compiler/linker options.

This is known to work onGCC (Linux, MacOS, Windows, and ?) as well as theMS VC toolchain.
Patches to enable other compilers arevery welcome.

Automatic dependencies
Module::Build::WithXSpp automatically adds several dependencies (on the currently running
versions) to your distribution. You can disable this by settingauto_configure_requires =>
0 in Build.PL.

These are at configure time:Module::Build , Module::Build::WithXSpp itself, and
ExtUtils::CppGuess . Additionally there will be a build-time dependency on
ExtUtils::XSpp .

You do not have to set these dependencies yourself unless you need to set the required versions
manually.

Include files
Unfortunately, including the perl headers produces quite some pollution and redefinition of common
symbols. Therefore, it may be necessary to include some of your headers before including the perl
headers. Specifically, this is the case forMSVC compilers and the standard library headers.

Therefore, if you care about that platform in the least, you should use theearly_includes option
when creating aModule::Build::WithXSpp object to list headers to include before the perl
headers. If such a supplied header file starts with a double quote,#include "..." is used,
otherwise#include <...> is the default. Example:

Module::Build::WithXSpp−>new(
early_includes => [qw(

"mylocalheader.h"
<mysystemheader.h>

)]
)

JUMP START FOR THE IMP ATIENT
There are as many ways to start a new CPAN distribution as there areCPAN distributions. Choose your
favourite (I just doh2xs −An My::Module), then apply a few changes to your setup:

• Obliterate anyMakefile.PL.

perl v5.22.2 2016-08-27 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Module::Build::WithXSpp(3pm) UserContributed Perl Documentation Module::Build::WithXSpp(3pm)

This is what yourBuild.PLshould look like:

use strict;
use warnings;
use 5.006001;
use Module::Build::WithXSpp;

my $build = Module::Build::WithXSpp−>new(
module_name => 'My::Module',
license => 'perl',
dist_author => q{John Doe <john_does_mail_address>},
dist_version_from => 'lib/My/Module.pm',
build_requires => { 'Test::More' => 0, },
extra_typemap_modules => {

'ExtUtils::Typemaps::ObjectMap' => '0',
. ..

},
);
$build−>create_build_script;

If you need to link against some librarylibfoo , add this to the options:

extra_linker_flags => [qw(−lfoo)],

There isextra_compiler_flags , too, if you need it.

• You create two folders in the main distribution folder:src andxsp.

• You put any C++ code that you want to build and include in the module intosrc/. All the typical
C(++) file extensions are recognized and will be compiled to object files and linked into the module.
And headers in that folder will be accessible for#include <myheader.h> .

For good measure, move a copy of ppport.hto that directory. See Devel::PPPort.

• You do not write normalXS files. Instead, you writeXS++ and put it into thexsp/folder in files with
the .xsp extension. Do not worry, you can include verbatimXS blocks in XS++. For details on
XS++, see ExtUtils::XSpp.

• If you need to do any XS type mapping, put your typemaps into a.mapfile in thexsp directory.
Alternatively, searchCPAN for an appropriate typemap module (cf.ExtUtils::Typemaps::Default for
an explanation).XS++ typemaps belong into.xsptfiles in the same directory.

• In this scheme,lib/ only contains Perl module files (andPOD). If you started from a pure-Perl
distribution, don’t forget to add these magic two lines to your main module:

require XSLoader;
XSLoader::load('My::Module', $VERSION);

SEE ALSO
Module::Build upon which this module is based.

ExtUtils::XSpp implementsXS++. The ExtUtils::XSpp distribution contains anexamples
directory with a usage example of this module.

ExtUtils::Typemaps implements progammatic modification (merging) of C/XS typemaps.
ExtUtils::Typemaps was renamed fromExtUtils::Typemap since the original name
conflicted with the coretypemapfile on case-insensitive file systems.

ExtUtils::Typemaps::Default explains the concept of having typemaps shipped as modules.

ExtUtils::Typemaps::ObjectMap is such a typemap module and probably very useful for any XS++
module.

ExtUtils::Typemaps::STL::String implements simple typemapping forSTL std::string s.

AUTHOR
Steffen Mueller <smueller AT cpan DOT org>

With input and bug fixes from:

perl v5.22.2 2016-08-27 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

Module::Build::WithXSpp(3pm) UserContributed Perl Documentation Module::Build::WithXSpp(3pm)

Mattia Barbon

Shmuel Fomberg

Florian Schlichting

COPYRIGHT AND LICENSE
Copyright 2010, 2011, 2012, 2013 Steffen Mueller.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

perl v5.22.2 2016-08-27 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Build::WithXSpp

