
Module::Manifest(3pm) UserContributed Perl Documentation Module::Manifest(3pm)

NAME
Module::Manifest − Parse and examine a Perl distribution MANIFEST file

SYNOPSIS
Open and parse aMANIFEST andMANIFEST.SKIP:

my $manifest = Module::Manifest−>new('MANIFEST', 'MANIFEST.SKIP');

Check if a given file matches any known skip masks:

print "yes\n" if $manifest−>skipped('.svn');

DESCRIPTION
Module::Manifest is a simple utility module created originally for use in Module::Inspector.

It can load aMANIFEST file that comes in a Perl distribution tarball, examine the contents, and perform
some simple tasks. It can also load theMANIFEST.SKIP file and check that.

Granted, the functionality needed to do this is quite simple, but the Perl distribution MANIFEST
specification contains a couple of little idiosyncracies, such as line comments and space-seperated
inline comments.

The use of this module means that any little nigglies are dealt with behind the scenes, and you can
concentrate the main task at hand.

Comparison to ExtUtil::Manifest
This module is quite similar to ExtUtils::Manifest, or is at least similar in scope. However, there is a
general difference in approach.

ExtUtils::Manifest is imperative, requires the existance of the actualMANIFEST file on disk, and
requires that your current directory remains the same.

Module::Manifest treats theMANIFEST file as an object, can load a the file from anywhere on disk, and
can run some of the same functionality without having to change your current directory context.

That said, note that Module::Manifest is aimed at reading and checking existing MANFIFEST files,
rather than creating new ones.

COMPATIBILITY
This module should be compatible with Perl 5.005 and above. Howev er, it has only been rigorously
tested under Perl 5.10.0 on Linux.

If you encounter any problems on a different version or architecture, please contact the maintainer.

METHODS
new

Module::Manifest−>new($manifest, $skip)

Creates aModule::Manifest object, which either parses the files referenced by the$manifest
(for MANIFEST) and $skip (for MANIFEST.SKIP). If no parameters are specified, it creates an empty
object.

Example code:

my $manifest = Module::Manifest−>new;
my $manifest = Module::Manifest−>new($manifest);
my $manifest = Module::Manifest−>new($manifest, $skip);

This method will return an appropriateModule::Manifest object or throws an exception on error.

open
$manifest−>open($type => $filename)

Open and parse the file given by $filename , which may be a relative path. Theavailable$type
options are either: ’skip’ or ’manifest’

Example code:

$manifest−>open(skip => 'MANIFEST.SKIP');
$manifest−>open(manifest => 'MANIFEST');

This method doesn’t return anything, but may throw an exception on error.

perl v5.14.2 2010-06-15 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Manifest

Module::Manifest(3pm) UserContributed Perl Documentation Module::Manifest(3pm)

parse
$manifest−>parse($type => \@files)

Parse\@files , which is an array reference containing a list of files or regular expression masks. The
available$type options are either: ’skip’ or ’manifest’

Example code:

$manifest−>parse(skip => [
'\B\.svn\b',
'ˆBuild$',
'\bMakefile$',

]);

This method doesn’t return anything, but may throw an exception on error.

skipped
$manifest−>skipped($filename)

Check if $filename matches any masks that should be skipped, given the regular expressions
provided to either theparse or open methods.

Absolute path names must first be relativized and converted to a Unix-like path string by using the
normalize method.

Example code:

if ($manifest−>skipped('Makefile.PL')) {
do s tuff

}

This method returns a boolean true or false value indicating whether the file path is skipped according
theskipfile .

normalize
Module::Manifest−>normalize($path, $rel)
$manifest−>normalize($path, $rel)

This method takes a given platform-specific path string and converts it to a Unix-style string
compatible with theMANIFEST andMANIFEST.SKIP specifications.

Note that this method normalizes paths depending on the platform detected by$ˆO — that is, Win32
style paths can only be normalized if the module is currently running under Win32.

By default, this method will relativize file paths to the current working directory (using File::Spec’s
abs2rel method without a$root). To disable this behaviour, set$rel to a false value.

Example code:

Useful for normalizing Win32−style paths
my $normal = Module::Manifest−>normalize('t\\test\\file');
Returns: t/test/file (ie, in Unix style for MANIFEST)

This returns a normalized version of the given path.

file
$manifest−>file

Thefile accessor returns the absolute path of theMANIFEST file that was loaded.

skipfile
$manifest−>skipfile

Theskipfile accessor returns the absolute path of theMANIFEST.SKIP file that was loaded.

dir
$manifest−>dir

The dir accessor returns the path to the directory that contains theMANIFEST or skip file, and thus
SHOULD be the root of the distribution.

perl v5.14.2 2010-06-15 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Manifest

Module::Manifest(3pm) UserContributed Perl Documentation Module::Manifest(3pm)

files
$manifest−>files

The files method returns the (relative, unix-style) list of files within the manifest. In scalar context,
returns the number of files in the manifest.

Example code:

my @files = $manifest−>files;

LIMIT ATIONS
The directory returned by thedir method is overwritten whenever open is called. This means that, if
MANIFEST andMANIFEST.SKIP are not in the same directory, the module may get a bit confused.

SUPPORT
This module is stored in an Open Repository at the following address:

http://svn.ali.as/cpan/trunk/Module−Manifest <http://svn.ali.as/cpan/trunk/Module-Manifest>

Write access to the repository is made available automatically to any publishedCPAN author, and to
most other volunteers on request.

If you are able to submit your bug report in the form of new (failing) unit tests, or can apply your fix
directly instead of submitting a patch, you arestrongly encouraged to do so. The author currently
maintains over 100 modules and it may take some time to deal with non-critical bug reports or patches.

This will guarantee that your issue will be addressed in the next release of the module.

If you cannot provide a direct test or fix, or don’t hav etime to do so, then regular bug reports are still
accepted and appreciated via theCPAN bug tracker.

http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Module−Manifest
<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Module-Manifest>

For other issues, for commercial enhancement and support, or to have your write access enabled for the
repository, contact the author at the email address above.

AUTHOR
Adam Kennedy <adamk AT cpan DOT org>

CONTIRBUTORS
Jonathan Yu <jawnsy AT cpan DOT org>

SEE ALSO
ExtUtils::Manifest

COPYRIGHT
Copyright 2006 − 2010 Adam Kennedy

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

The full text of the license can be found in theLICENSEfile included with this module.

perl v5.14.2 2010-06-15 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Manifest

