
Module::Pluggable(3pm) UserContributed Perl Documentation Module::Pluggable(3pm)

NAME
Module::Pluggable − automatically give your module the ability to have plugins

SYNOPSIS
Simple use Module::Pluggable −

package MyClass;
use Module::Pluggable;

and then later ...

use MyClass;
my $mc = MyClass−>new();
r eturns the names of all plugins installed under MyClass::Plugin::*
my @plugins = $mc−>plugins();

EXAMPLE
Why would you want to do this? Say you have something that wants to pass an object to a number of
different plugins in turn. For example you may want to extract meta-data from every email you get sent
and do something with it. Plugins make sense here because then you can keep adding new meta data
parsers and all the logic and docs for each one will be self contained and new handlers are easy to add
without changing the core code. For that, you might do something like ...

package Email::Examiner;

use strict;
use Email::Simple;
use Module::Pluggable require => 1;

sub handle_email {
my $self = shift;
my $email = shift;

foreach my $plugin ($self−>plugins) {
$plugin−>examine($email);

}

return 1;
}

.. and all the plugins will get a chance in turn to look at it.

This can be trivially extended so that plugins could save the email somewhere and then no other plugin
should try and do that. Simply have it so that theexamine method returns1 if it has saved the email
somewhere. You might also want to be paranoid and check to see if the plugin has anexamine
method.

foreach my $plugin ($self−>plugins) {
next unless $plugin−>can('examine');
last if $plugin−>examine($email);

}

And so on. The sky’s the limit.

DESCRIPTION
Provides a simple but, hopefully, extensible way of having ’plugins’ for your module. Obviously this
isn’t going to be the be all and end all of solutions but it works for me.

Essentially all it does is export a method into your namespace that looks through a search path for .pm
files and turn those into class names.

Optionally it instantiates those classes for you.

ADVANCED USAGE
Alternatively, if you don’t want to use ’plugins’ as the method ...

perl v5.20.2 2015-08-04 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Pluggable

Module::Pluggable(3pm) UserContributed Perl Documentation Module::Pluggable(3pm)

package MyClass;
use Module::Pluggable sub_name => 'foo';

and then later ...

my @plugins = $mc−>foo();

Or if you want to look in another namespace

package MyClass;
use Module::Pluggable search_path => ['Acme::MyClass::Plugin', 'MyClass::Extend'];

or directory

use Module::Pluggable search_dirs => ['mylibs/Foo'];

Or if you want to instantiate each plugin rather than just return the name

package MyClass;
use Module::Pluggable instantiate => 'new';

and then

whatever is passed to 'plugins' will be passed
to ' new' for each plugin
my @plugins = $mc−>plugins(@options);

alternatively you can just require the module without instantiating it

package MyClass;
use Module::Pluggable require => 1;

since requiring automatically searches inner packages, which may not be desirable, you can turn this
off

package MyClass;
use Module::Pluggable require => 1, inner => 0;

You can limit the plugins loaded using the except option, either as a string, array ref or regex

package MyClass;
use Module::Pluggable except => 'MyClass::Plugin::Foo';

or

package MyClass;
use Module::Pluggable except => ['MyClass::Plugin::Foo', 'MyClass::Plugin::Bar'];

or

package MyClass;
use Module::Pluggable except => qr/ˆMyClass::Plugin::(Foo|Bar)$/;

and similarly for only which will only load plugins which match.

Remember you can use the module more than once

package MyClass;
use Module::Pluggable search_path => 'MyClass::Filters' sub_name => 'filters';
use Module::Pluggable search_path => 'MyClass::Plugins' sub_name => 'plugins';

and then later ...

my @filters = $self−>filters;
my @plugins = $self−>plugins;

PLUGIN SEARCHING
Every time you call ’plugins’ the whole search path is walked again. This allows for dynamically
loading plugins even at run time. However this can get expensive and so if you don’t expect to want to
add new plugins at run time you could do

package Foo;
use strict;
use Module::Pluggable sub_name => '_plugins';

perl v5.20.2 2015-08-04 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Pluggable

Module::Pluggable(3pm) UserContributed Perl Documentation Module::Pluggable(3pm)

our @PLUGINS;
sub plugins { @PLUGINS ||= shift−>_plugins }
1;

INNER PACKAGES
If you have, for example, a filelib/Something/Plugin/Foo.pm that contains package definitions for
both Something::Plugin::Foo andSomething::Plugin::Bar then as long as you either
have either therequire or instantiate option set then we’ll also findSomething::Plugin::Bar .
Nifty!

OPTIONS
You can pass a hash of options when importing this module.

The options can be ...

sub_name
The name of the subroutine to create in your namespace.

By default this is ’plugins’

search_path
An array ref of namespaces to look in.

search_dirs
An array ref of directories to look in before@INC.

instantiate
Call this method on the class. In general this will probably be ’new’ but it can be whatever you want.
Whatever arguments are passed to ’plugins’ will be passed to the method.

The default is ’undef’ i .e just return the class name.

require
Just require the class, don’t instantiate (overrides ’instantiate’);

inner
If set to 0 willnot search inner packages. If set to 1 will override require .

only
Takes astring, array ref or regex describing the names of the only plugins to return. Whilst this may
seem perverse ... well, it is. But it also makes sense. Trust me.

except
Similar to only it takes a description of plugins to exclude from returning. This is slightly less
perverse.

package
This is for use by extension modules which build onModule::Pluggable : passing apackage
option allows you to place the plugin method in a different package other than your own.

file_regex
By defaultModule::Pluggable only looks for.pmfiles.

By supplying a newfile_regex then you can change this behaviour e.g

file_regex => qr/\.plugin$/

include_editor_junk
By default Module::Pluggable ignores files that look like they were left behind by editors.
Currently this means files ending in˜ (˜), the extensions.swpor .swo, or files beginning with.#.

Settinginclude_editor_junk changesModule::Pluggable so it does not ignore any files it
finds.

follow_symlinks
Whether, when searching directories, to follow symlinks.

Defaults to 1 i.e do follow symlinks.

min_depth, max_depth
This will allow you to set what ’depth’ of plugin will be allowed.

perl v5.20.2 2015-08-04 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Pluggable

Module::Pluggable(3pm) UserContributed Perl Documentation Module::Pluggable(3pm)

So, for example, MyClass::Plugin::Foo will have a depth of 3 and
MyClass::Plugin::Foo::Bar will have a depth of 4 so to only get the former (i.e
MyClass::Plugin::Foo) do

package MyClass;
use Module::Pluggable max_depth => 3;

and to only get the latter (i.eMyClass::Plugin::Foo::Bar)

package MyClass;
use Module::Pluggable min_depth => 4;

TRIGGERS
Various triggers can also be passed in to the options.

If any of these triggers return 0 then the plugin will not be returned.

before_require <plugin>
Gets passed the plugin name.

If 0 is returned then this plugin will not be required either.

on_require_error <plugin> <err>
Gets called when there’s an error on requiring the plugin.

Gets passed the plugin name and the error.

The default on_require_error handler is tocarp the error and return 0.

on_instantiate_error <plugin> <err>
Gets called when there’s an error on instantiating the plugin.

Gets passed the plugin name and the error.

The default on_instantiate_error handler is tocarp the error and return 0.

after_requir e <plugin>
Gets passed the plugin name.

If 0 is returned then this plugin will be required but not returned as a plugin.

METHODs
search_path

The methodsearch_path is exported into you namespace as well.You can call that at any time to
change or replace the search_path.

$self−>search_path(add => "New::Path"); # add
$self−>search_path(new => "New::Path"); # replace

BEHAVIOUR UNDER TEST ENVIRONMENT
In order to make testing reliable we exclude anything not from blib if blib.pm is in%INC.

However if the module being tested used another module that itself usedModule::Pluggable then
the second module would fail. This was fixed by checking to see if the caller had (ˆ|/)blib/ in their
filename.

There’s an argument that this is the wrong behaviour and that modules should explicitly trigger this
behaviour but that particular code has been around for 7 years now and I’m reluctant to change the
default behaviour.

You can now (as of version 4.1) force Module::Pluggable to look outside blib in a test environment by
doing either

require Module::Pluggable;
$Module::Pluggable::FORCE_SEARCH_ALL_PATHS = 1;
import Module::Pluggable;

or

use Module::Pluggable force_search_all_paths => 1;

@INChooks and App::FatPacker
If a module’s @INChas a hook and that hook is an object which has afiles() method then we will
try and require those files too. Seet/26inc_hook.t for an example.

perl v5.20.2 2015-08-04 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Pluggable

Module::Pluggable(3pm) UserContributed Perl Documentation Module::Pluggable(3pm)

This has allowed App::FatPacker (as of version 0.10.0) to provide support for Module::Pluggable.

This should also, theoretically, allow someone to modifyPAR to do the same thing.

Module::Requir e recommended
Up until version 5.2 Module::Pluggable used a stringeval to require plugins.

This has now been changed to optionally use Module::Runtime and it’s require_module method
when available and fall back to using a path basedrequire when not.

It’s recommended, but not required, that you install Module::Runtime.

FUTURE PLANS
This does everything I need and I can’t really think of any other features I want to add. Famous last
words of course (not least because we’re up to version 5.0 at the time of writing).

However suggestions (and patches) are always welcome.

DEVELOPMENT
The master repo for this module is at

https://github.com/simonwistow/Module−Pluggable

AUTHOR
Simon Wistow <simon AT thegestalt DOT org>

COPYING
Copyright, 2006 Simon Wistow

Distributed under the same terms as Perl itself.

BUGS
None known.

SEE ALSO
File::Spec, File::Find, File::Basename, Class::Factory::Util, Module::Pluggable::Ordered

perl v5.20.2 2015-08-04 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Pluggable

