
Module::Runtime(3pm) UserContributed Perl Documentation Module::Runtime(3pm)

NAME
Module::Runtime − runtime module handling

SYNOPSIS
use Module::Runtime qw(

$module_name_rx is_module_name check_module_name
module_notional_filename require_module

);

if($module_name =˜ /\A$module_name_rx\z/o) { ...
if(is_module_name($module_name)) { ...
check_module_name($module_name);

$notional_filename = module_notional_filename($module_name);
require_module($module_name);

use Module::Runtime qw(use_module use_package_optimistically);

$bi = use_module("Math::BigInt", 1.31)−>new("1_234");
$widget = use_package_optimistically("Local::Widget")−>new;

use Module::Runtime qw(
$top_module_spec_rx $sub_module_spec_rx
is_module_spec check_module_spec
compose_module_name

);

if($spec =˜ /\A$top_module_spec_rx\z/o) { ...
if($spec =˜ /\A$sub_module_spec_rx\z/o) { ...
if(is_module_spec("Standard::Prefix", $spec)) { ...
check_module_spec("Standard::Prefix", $spec);

$module_name =
compose_module_name("Standard::Prefix", $spec);

DESCRIPTION
The functions exported by this module deal with runtime handling of Perl modules, which are normally
handled at compile time. This module avoids using any other modules, so that it can be used in low-
level infrastructure.

The parts of this module that work with module names apply the same syntax that is used for
barewords in Perl source. In principle this syntax can vary between versions of Perl, and this module
applies the syntax of the Perl on which it is running.In practice the usable syntax hasn’t changed yet.
There’s some intent for Unicode module names to be supported in the future, but this hasn’t yet
amounted to any consistent facility.

The functions of this module whose purpose is to load modules include workarounds for three old Perl
core bugs regarding require . These workarounds are applied on any Perl version where the bugs
exist, except for a case where one of the bugs cannot be adequately worked around in pure Perl.

Module name syntax
The usable module name syntax has not changed from Perl 5.000 up to Perl 5.19.8.The syntax is
composed entirely ofASCII characters. FromPerl 5.6 onwards there has been some attempt to allow
the use of non-ASCII Unicode characters in Perl source, but it was fundamentally broken (like the
entirety of Perl 5.6’s Unicode handling) and remained pretty much entirely unusable until it got some
attention in the Perl 5.15 series. Although Unicode is now consistently accepted by the parser in some
places, it remains broken for module names.Furthermore, there has not yet been any work on how to
map Unicode module names into filenames, so in that respect also Unicode module names are
unusable.

The module name syntax is, precisely: the string must consist of one or more segments separated by
:: ; each segment must consist of one or more identifier characters (ASCII alphanumerics plus ‘‘_’’);

perl v5.20.2 2015-06-10 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Runtime

Module::Runtime(3pm) UserContributed Perl Documentation Module::Runtime(3pm)

the first character of the string must not be a digit. Thus "IO::File ‘‘ , ’’warnings ‘‘ , and
’’ foo::123::x_0 ‘‘ are all valid module names, whereas ’’ IO:: ‘‘ and ’’1foo::bar " are not. '
separators are not permitted by this module, though they remain usable in Perl source, being translated
to :: in the parser.

Core bugs worked around
The first bug worked around is core bug [perl #68590], which causes lexical state in one file to leak into
another that isrequire d/use d from it. This bug is present from Perl 5.6 up to Perl 5.10, and is fixed
in Perl 5.11.0.From Perl 5.9.4 up to Perl 5.10.0 no satisfactory workaround is possible in pure Perl.
The workaround means that modules loaded via this module don’t suffer this pollution of their lexical
state. Modulesloaded in other ways, or via this module on the Perl versions where the pure Perl
workaround is impossible, remain vulnerable.The module Lexical::SealRequireHints provides a
complete workaround for this bug.

The second bug worked around causes some kinds of failure in module loading, principally
compilation errors in the loaded module, to be recorded in%INC as if they were successful, so later
attempts to load the same module immediately indicate success. This bug is present up to Perl 5.8.9,
and is fixed in Perl 5.9.0.The workaround means that a compilation error in a module loaded via this
module won’t be cached as a success. Modules loaded in other ways remain liable to produce bogus
%INC entries, and if a bogus entry exists then it will mislead this module if it is used to re-attempt
loading.

The third bug worked around causes the wrong context to be seen at file scope of a loaded module, if
require is invoked in a location that inherits context from a higher scope. This bug is present up to
Perl 5.11.2, and is fixed in Perl 5.11.3. The workaround means that a module loaded via this module
will always see the correct context. Modulesloaded in other ways remain vulnerable.

REGULAR EXPRESSIONS
These regular expressions do not include any anchors, so to check whether an entire string matches a
syntax item you must supply the anchors yourself.

$module_name_rx
Matches a valid Perl module name in bareword syntax.

$top_module_spec_rx
Matches a module specification for use with ‘‘compose_module_name’’, where no prefix is being
used.

$sub_module_spec_rx
Matches a module specification for use with ‘‘compose_module_name’’, where a prefix is being
used.

FUNCTIONS
Basic module handling

is_module_name(ARG)
Returns a truth value indicating whetherARG is a plain string satisfying Perl module name syntax
as described for ‘‘$module_name_rx’’.

is_valid_module_name(ARG)
Deprecated alias for ‘‘is_module_name’’.

check_module_name(ARG)
Check whetherARG is a plain string satisfying Perl module name syntax as described for
‘‘ $module_name_rx’’. Returnnormally if it is, ordie if it is not.

module_notional_filename(NAME)
Generates a notional relative filename for a module, which is used in some Perl core interfaces.
The NAME is a string, which should be a valid module name (one or more:: −separated
segments). Ifit is not a valid name, the functiondie s.

The notional filename for the named module is generated and returned.This filename is always in
Unix style, with/ directory separators and a.pm suffix. This kind of filename can be used as an
argument torequire , and is the key that appears in%INC to identify a module, regardless of
actual local filename syntax.

perl v5.20.2 2015-06-10 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Runtime

Module::Runtime(3pm) UserContributed Perl Documentation Module::Runtime(3pm)

require_module(NAME)
This is essentially the bareword form ofrequire , in runtime form. TheNAME is a string, which
should be a valid module name (one or more:: −separated segments). Ifit is not a valid name,
the functiondie s.

The module specified byNAME is loaded, if it hasn’t been already, in the manner of the bareword
form of require . That means that a search through@INCis performed, and a byte-compiled
form of the module will be used if available.

The return value is as forrequire . That is, it is the value returned by the module itself if the
module is loaded anew, or 1 if the module was already loaded.

Structured module use
use_module(NAME[,VERSION])

This is essentiallyuse in runtime form, but without the importing feature (which is
fundamentally a compile-time thing).The NAME is handled just like in require_module
above: it must be a module name, and the named module is loaded as if by the bareword form of
require .

If a VERSION is specified, theVERSIONmethod of the loaded module is called with the specified
VERSION as an argument. Thisnormally serves to ensure that the version loaded is at least the
version required. This is the same functionality provided by theVERSION parameter ofuse .

On success, the name of the module is returned.This is unlike ‘‘require_module’’, and is done so
that the entire call to ‘‘use_module’’ can be used as a class name to call a constructor, as in the
example in the synopsis.

use_package_optimistically(NAME[,VERSION])
This is an analogue of ‘‘use_module’’ f or the situation where there is uncertainty as to whether a
package/class is defined in its own module or by some other means. It attempts to arrange for the
named package to be available, either by loading a module or by doing nothing and hoping.

An attempt is made to load the named module (as if by the bareword form of require). If the
module cannot be found then it is assumed that the package was actually already loaded by other
means, and no error is signalled. That’s the optimistic bit.

This is mostly the same operation that is performed by the base pragma to ensure that the specified
base classes are available. The behaviour of base was simplified in version 2.18, and later
improved in version 2.20, and on both occasions this function changed to match.

If a VERSION is specified, theVERSIONmethod of the loaded package is called with the specified
VERSION as an argument. Thisnormally serves to ensure that the version loaded is at least the
version required. On success, the name of the package is returned.These aspects of the function
work just like ‘‘use_module’’.

Module name composition
is_module_spec(PREFIX, SPEC)

Returns a truth value indicating whetherSPEC is valid input for ‘‘compose_module_name’’. See
below for what that entails. Whether aPREFIX is supplied affects the validity of SPEC, but the
exact value of the prefix is unimportant, so this function treatsPREFIX as a truth value.

is_valid_module_spec(PREFIX, SPEC)
Deprecated alias for ‘‘is_module_spec’’.

check_module_spec(PREFIX, SPEC)
Check whetherSPEC is valid input for ‘‘compose_module_name’’. Return normally if it is, or
die if it is not.

compose_module_name(PREFIX, SPEC)
This function is intended to make it more convenient for a user to specify a Perl module name at
runtime. Usershave greater need for abbreviations and context-sensitivity than programmers, and
Perl module names get a little unwieldy. SPEC is what the user specifies, and this function
translates it into a module name in standard form, which it returns.

SPEC has syntax approximately that of a standard module name: it should consist of one or more
name segments, each of which consists of one or more identifier characters.However, / is

perl v5.20.2 2015-06-10 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Runtime

Module::Runtime(3pm) UserContributed Perl Documentation Module::Runtime(3pm)

permitted as a separator, in addition to the standard:: . The two separators are entirely
interchangeable.

Additionally, if PREFIX is notundef then it must be a module name in standard form, and it is
prefixed to the user-specified name.The user can inhibit the prefix addition by startingSPEC with
a separator (either/ or ::).

BUGS
On Perl versions 5.7.2 to 5.8.8, ifrequire is overridden by theCORE::GLOBALmechanism, it is
likely to break the heuristics used by ‘‘use_package_optimistically’’, making it signal an error for a
missing module rather than assume that it was already loaded. From Perl 5.8.9 onwards, and on 5.7.1
and earlier, this module can avoid being confused by such an override. Onthe affected versions, a
require override might be installed by Lexical::SealRequireHints, if something requires its bugfix
but for some reason itsXS implementation isn’t available.

SEE ALSO
Lexical::SealRequireHints, base, ‘‘require’’ in perlfunc, ‘‘use’’ in perlfunc

AUTHOR
Andrew Main (Zefram) <zefram AT fysh DOT org>

COPYRIGHT
Copyright (C) 2004, 2006, 2007, 2009, 2010, 2011, 2012, 2014 Andrew Main (Zefram) <zefram AT
fysh DOT org>

LICENSE
This module is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

perl v5.20.2 2015-06-10 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::Runtime

