
Module::ScanDeps(3pm) UserContributed Perl Documentation Module::ScanDeps(3pm)

NAME
Module::ScanDeps − Recursively scan Perl code for dependencies

SYNOPSIS
Via the command-line program scandeps:

% scandeps *.pm # Print PREREQ_PM section for *.pm
% scandeps −e "use utf8" # Read script from command line
% scandeps −B *.pm # I nclude core modules
% scandeps −V *.pm # Show autoload/shared/data files

Used in a program;

use Module::ScanDeps;

s tandard usage
my $hash_ref = scan_deps(

files => [' a.pl', 'b.pl'],
recurse => 1,

);

s horthand; assume recurse == 1
my $hash_ref = scan_deps('a.pl', 'b.pl');

App::Packer::Frontend compatible interface
s ee App::Packer::Frontend for the structure returned by get_files
my $scan = Module::ScanDeps−>new;
$scan−>set_file('a.pl');
$scan−>set_options(add_modules => ['Test::More']);
$scan−>calculate_info;
my $files = $scan−>get_files;

DESCRIPTION
This module scans potential modules used by perl programs, and returns a hash reference; its keys are
the module names as appears in%INC(e.g.Test/More.pm); the values are hash references with this
structure:

{
file => '/usr/local/lib/perl5/5.8.0/Test/More.pm',
key => 'Test/More.pm',
type => 'module', # or 'autoload', 'data', 'shared'
used_by => ['Test/Simple.pm', ...],
uses => [' Test/Other.pm', ...],

}

One function, scan_deps , is exported by default. Other functions such as (scan_line ,
scan_chunk , add_deps , path_to_inc_name) are exported upon request.

Users ofApp::Packer may also use this module as the dependency-checking frontend, by tweaking
their p2e.pl like below:

use Module::ScanDeps;
...
my $packer = App::Packer−>new(frontend => 'Module::ScanDeps');
...

Please see App::Packer::Frontend for detailed explanation on the structure returned byget_files .

scan_deps

perl v5.24.1 2016-12-26 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::ScanDeps

Module::ScanDeps(3pm) UserContributed Perl Documentation Module::ScanDeps(3pm)

$rv_ref = scan_deps(
files => \@files, recurse => $recurse,
rv => \%rv, skip => \%skip,
compile => $compile, execute => $execute,

);
$rv_ref = scan_deps(@files); # shorthand, with recurse => 1

This function scans each file in@files , registering their dependencies into%rv, and returns a
reference to the updated%rv. The meaning of keys and values are explained above.

If $recurse is true,scan_deps will call itself recursively, to perform a breadth-first search on text
files (as defined by the −T operator) found in%rv.

If the \%skip is specified, files that exists as its keys are skipped. This is used internally to avoid
infinite recursion.

If $compile or $execute is true, runsfiles in either compile-only or normal mode, then inspects
their%INCafter termination to determine additional runtime dependencies.

If $execute is an array reference, passes@$execute as arguments to each file in@files when it
is run.

If performance of the scanning process is a concern,cache_file can be set to a filename. The
scanning results will be cached and written to the file. This will speed up the scanning process on
subsequent runs.

Additionally, an option warn_missing is recognized. If set to true,scan_deps issues a warning to
STDERR for every module file that the scanned code depends but that wasn’t found. Please note that
this may also report numerous false positives. That is why by default, the heuristic silently drops all
dependencies it cannot find.

scan_deps_runtime
Like scan_deps, but skips the static scanning part.

scan_line
@modules = scan_line($line);

Splits a line into chunks (currently with the semicolon characters), and return the union of
scan_chunk calls of them.

If the line is_ _END_ _ or _ _DATA_ _ , a single _ _END_ _ element is returned to signify the end of
the program.

Similarly, it returns a single_ _POD_ _ if the line matches/ˆ=\w/ ; the caller is responsible for
skipping appropriate number of lines until=cut , before callingscan_line again.

scan_chunk
$module = scan_chunk($chunk);
@modules = scan_chunk($chunk);

Apply various heuristics to$chunk to find and return the module name(s) it contains. In scalar
context, returns only the first module orundef .

add_deps
$rv_ref = add_deps(rv => \%rv, modules => \@modules);
$rv_ref = add_deps(@modules); # shorthand, without rv

Resolves a list of module names to its actual on-disk location, by finding in@INC and
@Module::ScanDeps::IncludeLibs ; modules that cannot be found are skipped.

This function populates the%rv hash with module/filename pairs, and returns a reference to it.

path_to_inc_name
$perl_name = path_to_inc_name($path, $warn)

Assumes$path refers to a perl file and does it’s best to return the name as it would appear in%INC.
Returns undef if no match was found and a prints a warning toSTDERRif $warn is true.

E.g. if $path = perl/site/lib/Module/ScanDeps.pm then$perl_name will be Module/ScanDeps.pm.

perl v5.24.1 2016-12-26 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::ScanDeps

Module::ScanDeps(3pm) UserContributed Perl Documentation Module::ScanDeps(3pm)

NOTES
@Module::ScanDeps::IncludeLibs

You can set this global variable to specify additional directories in which to search modules without
modifying@INCitself.

$Module::ScanDeps::ScanFileRE
You can set this global variable to specify a regular expression to identify what files to scan. By default
it includes all files of the following types: .pm, .pl, .t and .al. Additionally, all files without a suffix are
considered.

For instance, if you want to scan all files then use the following:

$Module::ScanDeps::ScanFileRE = qr/./

CAVEATS
This module intentionally ignores theBSDPAN hack on FreeBSD— the additional directory is
removed from@INCaltogether.

The static-scanning heuristic is not likely to be 100% accurate, especially on modules that dynamically
load other modules.

Chunks that span multiple lines are not handled correctly. For example, this one works:

use base 'Foo::Bar';

But this one does not:

use base
'Foo::Bar';

SEE ALSO
scandeps is a bundled utility that writesPREREQ_PMsection for a number of files.

An application ofModule::ScanDeps is to generate executables from scripts that contains prerequisite
modules; this module supports two such projects,PAR and App::Packer. Please see their respective
documentations onCPAN for further information.

AUTHORS
Audrey Tang <cpan AT audreyt DOT org>

To a lesser degree: Steffen Mueller <smueller AT cpan DOT org>

Parts of heuristics were deduced from:

• PerlApp by ActiveState Tools Corp <http://www.activestate.com/>

• Perl2Exe by IndigoStar, Inc <http://www.indigostar.com/>

Thescan_deps_runtime function is contributed by Edward S. Peschko.

You can write to the mailing list at <par AT perl DOT org>, or send an empty mail to <par−subscribe
AT perl DOT org> to participate in the discussion.

Please submit bug reports to <bug−Module−ScanDeps AT rt DOT cpan DOT org>.

COPYRIGHT
Copyright 2002−2008 by Audrey Tang <cpan AT audreyt DOT org>; 2005−2010 by Steffen Mueller
<smueller AT cpan DOT org>.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

See <http://www.perl.com/perl/misc/Artistic.html>

perl v5.24.1 2016-12-26 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Module::ScanDeps

