
Mon::Config(3pm) UserContributed Perl Documentation Mon::Config(3pm)

NAME
Mon::Client − Methods for interaction with Mon client

SYNOPSIS
use Mon::Client;

DESCRIPTION
Mon::Client is used to interact with "mon" clients. It supports
a protocol−independent API for retrieving the status of the mon
server, and performing certain operations, such as disableing hosts
and service checks.

METHODS
new

Creates a new object. A hash can be supplied which sets the default values. An example which
contains all of the variables that you can initialize:

$c = new Mon::Client (
host => "monhost",
port => 2583,
username => "foo",
password => "bar",

);

password (pw)
If pw is provided, sets the password. Otherwise, returns the currently set password.

host (host)
If host is provided, sets the mon host. Otherwise, returns the currently set mon host.

port (portnum)
If portnum is provided, sets the mon port number. Otherwise, returns the currently set port
number.

username (user)
If user is provided, sets the user login. Otherwise, returns the currently set user login.

prot
If protocol is provided, sets the protocol, specified by a string which is of the form ‘‘1.2.3’’, where
‘‘ 1’’ is the major revision, ‘‘2’ ’ is the minor revision, and ‘‘3’ ’ is the sub-minor revision. If
protocol is not provided, the currently set protocol is returned.

protid ([protocol])
Returns true if client and server protocol match, false otherwise. Implicitly called byconnect. If
protocol is specified as an integer, supplies that protocol version to the server for verification.

version
Returns the protocol version of the remote server.

error
Returns the error string from set by the last method, or undef if there was no error.

connected
Returns 0 (not connected) or 1 (connected).

connect (%args)
Connects to the server. If host and port have not been set, uses the defaults. Returnsundef on
error. If $args {‘‘skip_protid’’} is true, skip protocol identification upon connect.

disconnect
Disconnects from the server. Returnundef on error.

login (%hash)
%hash is optional, but if specified, should contain two keys,username andpassword.

Performs the ‘‘login’ ’ command to authenticate the user to the server. Uses username and
password if specified, otherwise uses the username and password previously set by those
methods, respectively.

perl v5.14.2 2004-06-18 1

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Mon::Config

Mon::Config(3pm) UserContributed Perl Documentation Mon::Config(3pm)

checkauth (command)
Checks to see if the specified command, as executed by the current user, is authorized by the
server, without actually executing the command.Returns 1 (command is authorized) or 0
(command is not authorized).

disable_watch (watch)
Disableswatch.

disable_service (watch, service)
Disables a service, as specified bywatch andservice.

disable_host (host)
Disableshost.

enable_watch (watch)
Enableswatch.

enable_service (watch, service)
Enables a service as specified bywatch andservice.

enable_host (host)
Enableshost.

set (group, service, var, val)
Setsvar in group,service to val. Returns undef on error.

get (group, service, var)
Gets variablevar in group,service and returns it, or undef on error.

quit
Logs out of the server. This method should be followed by a call to thedisconnect method.

list_descriptions
Returns a hash of service descriptions, indexed by watch and service. For example:

%desc = $mon−>list_descriptions;
print "$desc{'watchname'}−>{'servicename'}\n";

list_deps
Lists dependency expressions and their components for all services. If there is no dependency for
a particular service, then the value will be ‘‘NONE’’ .

%deps = $mon−>list_deps;
foreach $watch (keys %deps) {

foreach $service (keys %{$deps{$watch}}) {
my $sref = \%{$deps{$watch}−>{$service}};
print "expr ($watch,$service) = $sref−>{expression}\n";
print "components ($watch,$service) = @{$sref−>{components}}\n";

}
}

list_group (hostgroup)
Lists members ofhostgroup. Returns an array of each member.

list_watch
Returns an array of all the defined watch groups and services.

foreach $w ($mon−>list_watch) {
print "group=$w−>[0] service=$w−>[1]\n";

}

list_opstatus ([group1, service1], ...)
Returns a hash of per-service operational statuses, as indexed by watch and service. The list of
anonymous arrays is optional, and if is not provided then the status of all groups and services will
be queried.

perl v5.14.2 2004-06-18 2

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Mon::Config

Mon::Config(3pm) UserContributed Perl Documentation Mon::Config(3pm)

%s = $mon−>list_opstatus;
foreach $watch (keys %s) {

foreach $service (keys %{$s{$watch}}) {
foreach $var (keys %{$s{$watch}{$service}}) {

print "$watch $service $var=$s{$watch}{$service}{$var}\n";
}

}
}

list_failures
Returns a hash in the same manner aslist_opstatus, but only the services which are in a failure
state.

list_successes
Returns a hash in the same manner aslist_opstatus, but only the services which are in a success
state.

list_disabled
Returns a hash of disabled watches, services, and hosts.

%d = $mon−>list_disabled;

foreach $group (keys %{$d{"hosts"}}) {
foreach $host (keys %{$d{"hosts"}{$group}}) {

print "host $group/$host disabled\n";
}

}

foreach $watch (keys %{$d{"services"}}) {
foreach $service (keys %{$d{"services"}{$watch}}) {

print "service $watch/$service disabled\n";
}

}

for (keys %{$d{"watches"}}) {
print "watch $_ disabled\n";

}

list_alerthist
Returns an array of hash references containing the alert history.

@a = $mon−>list_alerthist;

for (@a) {
print join (" ",

$_−>{"type"},
$_−>{"watch"},
$_−>{"service"},
$_−>{"time"},
$_−>{"alert"},
$_−>{"args"},
$_−>{"summary"},
"\n",

);
}

list_dtlog
Returns an array of hash references containing the downtime log.

@a= $mon−>list_dtlog

perl v5.14.2 2004-06-18 3

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Mon::Config

Mon::Config(3pm) UserContributed Perl Documentation Mon::Config(3pm)

for (@a) {
print join (" ",

$_−>{"timeup"},
$_−>{"group"},
$_−>{"service"},
$_−>{"failtime"},
$_−>{"downtime"},
$_−>{"interval"},
$_−>{"summary"},
"\n",

);
}

list_failurehist
Returns an array of hash references containing the failure history.

@f = $mon−>list_failurehist;

for (@f) {
print join (" ",

$_−>{"watch"},
$_−>{"service"},
$_−>{"time"},
$_−>{"summary"},
"\n",

);
}

list_pids
Returns an array of hash references containing the list of process IDs of currently active monitors
run by the server.

@p = $mon−>list_pids;

$server = shift @p;

for (@p) {
print join (" ",

$_−>{"watch"},
$_−>{"service"},
$_−>{"pid"},
"\n",

);
}

list_state
Lists the state of the scheduler. Returns a two-element array. The first element of the array is 0 if
the scheduler is stopped, and 1 if the scheduler is currently running. The second element of the
array returned is the string ‘‘scheduler running’’ if t he scheduler is currently running, and if the
scheduler is stopped, the second element is thetime (2) that the scheduler was stopped.

@s = $mon−>list_state;

if ($s[0] == 0) {
print "scheduler stopped since " . localtime ($s[1]) . "\n";

}

start
Starts the scheduler.

stop
Stops the scheduler.

perl v5.14.2 2004-06-18 4

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Mon::Config

Mon::Config(3pm) UserContributed Perl Documentation Mon::Config(3pm)

reset
Resets the server.

reload (what)
Causes the server to reload its configuration.what is an optional argument, and currently the only
supported option isauth, which reloads the authorization file.

term
Terminates the server.

set_maxkeep
Sets the maximum number of history entries to store in memory.

get_maxkeep
Returns the maximum number of history entries to store in memory.

test (test, group, service [, exitval, period])
Schedules a service test to run immediately, or tests an alert for a given period. test must be
monitor, alert, startupalert, or upalert. To test alerts, theexitval andperiod must be supplied.
Periods are identified by their label in the mon config file. If there are no period tags, then the
actual period string must be used, exactly as it is listed in the config file.

test_config
Tests the syntax of the configuration file. Returns a two-element array. The first element of the
array is 0 if the syntax of the config file is invalid, and 1 if the syntax of the config file isOK. The
second element of the array returned is the failure message, if the config file has invalid syntax,
and the result code if the config file syntax isOK. This function returns undef if it cannot get a
connection or a response from the mon server.

Config file checking stops as soon as an error is found, so you will need to run this command more
than once if you have multiple errors in your config file in order to find them all.

@s = $mon−>test_config;

if ($s[0] == 0) {
print "error in config file:\n" . $s[1] . "\n";

}

ack (group, service, text)
When group/service is in a failure state, acknowledges this withtext, and disables all further
alerts during this failure period.

loadstate (state)
Loadsstate.

savestate (state)
Saves state.

servertime
Returns the time on the server using the same output as thetime (2) system call.

send_trap (%vars)
Sends a trap to a remote mon server. Here is an example:

$mon−>send_trap (
group => "remote−group",
service => "remote−service",
retval => 1,
opstatus => "fail",
summary => "hosta hostb hostc",
detail => "hosta hostb and hostc are unresponsive",

);

retval must be a nonnegative integer.

opstatus must be one offail, ok, coldstart, warmstart, linkdown, unknown, timeout, untested.

Returnsundef on error.

perl v5.14.2 2004-06-18 5

man.m.sourcentral.orgUbuntu 17.10 (Artful Aardvark)

https://man.m.sourcentral.org/ubuntu1710/3+Mon::Config

